丘成桐院士演讲:我研究数学的经验

我们学数学的不单是要学数学上的基本功夫,在物理上的基本功夫也要学,这是在大学时就要学的。力学、电磁学我们都要有一定的了解,因为物理跟数学这几十年来的发展越来越接近,很多问题是从物理上提供的。我们假如对这些基本的观念完全不认得的话,我们看到题目就比不上其他懂得这方面的数学家,能够很快的融会贯通。到了这个年代,很多的数学的问题往往是从其他的学问如理论物理、应用数学或其它的科学里来的,他们甚至提供intuition和方法。我们想了很久的一些问题,往往因此得到了解决,假使我们从来都不接触其他科学的话,就完全落伍了。

举个例子来讲,代数几何学家这二十年来已有长远的发展。可是到了这几年来用古典的方法或者纤维丛的方法,都没有办法解决的问题,结果从理论物理帮助我们看到以前看不到的可能。由于本身知识的局限,很多代数几何学家遇到这个困难的时候没有办法接受这些专家的看法,遇到理论物理就不敢去碰它。可是物理提供了,解决了我们基本问题的方向,代数几何学又觉得很难为情, 因为他们没有办法去了解,所以这是一个很困扰的问题. 假使你不肯学物理学上的基本功夫,你就很难接受这个新的挑战。

记得我看过一本书, 序言里讲作者很感谢代数学家Albert,他为什么感激他呢?他说Albert教我代数,使得我坐下来的时候,看代数问题不会恐慌,使我能够坐下来好好地对待代数上的问题。就是讲我们基本功夫能不能做到如此,我坐下来,看到几何问题或应用数学的问题,可不可以坐下来就想个办法来对付他,我想这是很重要的。我们往往看到问题,坐下来的时候,恐慌的不晓得怎么办,因此就算了,我想大家都有这个经验。你做基本功夫一定要做到你看一个题目,明明是unknown、unsolved的问题,你还是可以坐下来,然后花工夫去解决它。即使你不能够解决它,可是你至少晓得怎样去想办法,同时不会恐慌、放弃,我想这是最重要的。往往我们因为基本功夫没做好,当一个深的题目或看法出现的时候,我们就拒绝去接受,认为这些题目不重要,这是去解释自己为什么不能够去做某一个问题的时候最自然的方法。

训练基本功夫要在研究生、大学生或中学生的时候。基本功夫怎样学好呢?有时看一本书完了就放在一边,看了两、三本书后就以为懂了,其实单看书是不够的,最重要的是做习题,因为只有在做习题的工夫里面你才能晓得什么命题你不懂,也理解到古人遇到的困难在那里。习题不单在课本里找,在上课和听seminar时也可以找。我们很多学生上课的时候不愿意去写笔记,不作笔记的话根本不可能去念任何学科。尤其是有时候演讲的人讲的题目是根本不在书本里的,或者是还没有发表的。我常觉得很奇怪,为什么学生不去作笔记,他认为他懂了,其实明明不懂。因为可能连讲课的人自己都还没搞懂,可是听讲的人不愿意去作笔记,也不会去跟演讲的人谈,也不会去跟其他老师讨论。往往你花了一个钟头在那边听,听完了以后就全部忘掉了。因为你没有一个写下的笔记可以温习,怎么可能不忘掉呢?

另一个训练基本功夫就是要找出自己最不行的地方在哪里。我们来看”群表示理论”的时候,我们有一大套理论。单看理论是不够的,在应用时往往要知道群表示怎么分解的,你不能够将它写下来则理论对你一点好处都没有。又例如一个方程式的估计问题,你有没有办法瞭解其中的方法,就全靠你实际计算经验,不光念一两本书就足够的。举例来说,我的儿子最近刚学因式分解这个问题,老师教他一大堆怎么分解整数方程的问题。他学了。也学得很好,也学了怎么找根的方法。可是有一次考试是他不知道怎么因式分解?我跟他说,你明明晓得怎么找根,为什么不能够因式分解?主要是他学的时候没想到找根跟因式分解是同一件事情。问题就在于训练基本功夫的时候,要去想清楚数学命题间的关系,了解清楚为什么要解这些命题。

我们去看很多人写以前人的事,写了很多很漂亮的介绍和批评。可是你自己没有经历过这一条路的话,你事实上很难了解困难在什么地方,为什么人家会这样子想。要得到这个经验,不单要做习题,还要做比较困难的习题。做困难的习题有什么好处呢?困难的习题往往是几个比较基本的问题的组合。我自己看书的时候,常常会一本书一下子就看完了,觉得很高兴,因为看完了;可是重新再看,反而什么都不懂。我想大家都有这个经验,主要的原因是什么呢?我们没有学好这学科,做比较困难的题目的时候,你就会发觉会遇到困难。尤其是我们做一些题目的时候,往往就觉得似是而非,在脑子里面想,以为已经懂了、可以解决了、就一厢情愿的很快的解决它,很快的看完那一本书,事实上这是欺骗自己,也不是训练基本功夫的方法。一个好的题目,你应当坐下来用笔写下来一步一步地想,结果你会发现很多基本的步骤你根本没有弄清楚。当你弄清楚的时候,你去看你以前需要的定理在那里、怎么证的、我想你会慢慢了解整个学问的精义在哪里。

发表评论