常曲率Randers度量的分类

我们知道, 在黎曼几何中, 关于常截面曲率的完备黎曼流形(即空间形式)的分类已经完全解决:

Theorem 1. 对每个$c\in\R$以及所有的$n\in\Z^+$, 都存在唯一的(只相差一个等距)的单连通的$n$为空间形式, 使得其常截面曲率为$c$.

Proof . c.f. [伍鸿熙1989] P70 Thm1 与 P97 Thm10.

2004年, D, Bao, C, Robles & Z, Shen 证明了关于常旗曲率的Randers度量的分类定理, 证明主要依赖于如下结果:
Continue Reading

一个格点问题

我觉得下面的问题是有趣的:

Problem 1. 试求欧氏平面上以原点为中心$R$为半径的开圆盘内有多少个形如$(m,n)$的整数点, 其中$m,n$都是整数?

我的想法是利用计算机来具体的计算有多少个格点.
首先, 我们可以用一个函数$F$来判断给定的$(m,n)$是否是满足条件的点, 明显$F$可取为
$$F(x,y,R)=x^2+y^2-R^2$$
如果, $F(m,n,R)<0$则$(m,n)$就是满足条件的一个点. 注意到$x,y$的范围为:$-R< x ,y< R$, 这样我们很容易用两个循环来计算给定$R$时, 满足要求的点有多少个.
Continue Reading