Hello MathJax!!

The following equations are represented in the HTML source code as LaTeX expressions.
The Cauchy-Schwarz Inequality
\[\left(
\sum_{k=1}^n a_k b_k
\right)^2
\leq
\left(
\sum_{k=1}^n a_k^2
\right)
\left(
\sum_{k=1}^n b_k^2
\right)\]
Auto Numbering and Ref?
Suppose that \(f\) is a function with period $\pi$, then we have
$
\newcommand{\rd}{\rm d}
$
\begin{gather}\label{eq:1}
\int_t^{t+\pi} f(x)\rd x=\int_0^\pi f(x)\rd x.\tag{1}
\end{gather}
From \eqref{eq:1} we know that $\dots$.
Can we use \newcommand to define some macro?
$
\newcommand{\Re}{\mathrm{Re}\,}
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
define newcommand as:

$\newcommand{\Re}{\mathrm{Re}\,}
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2}
  \left(
    \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5}
  \right)}$

We consider, for various values of $s$, the $n$-dimensional integral
\begin{align}\label{def:Wns}
W_n (s):=
\int_{[0, 1]^n}
\left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer

\begin{align}\label{eq:W3k}
W_3(k)= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align}
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.
How about MathML?
Definition of Christoffel Symbols


  
    
      
        (
        
          
            
          
          
            X
          
        
        Y
        )
      
      
        k
      
    
    =
    
      
        X
      
      
        i
      
    
    
      
        (
        
          
            
          
          
            i
          
        
        Y
        )
      
      
        k
      
    
    =
    
      
        X
      
      
        i
      
    
    
      (
      
        
          
          
            
              Y
            
            
              k
            
          
        
        
          
          
            
              x
            
            
              i
            
          
        
      
      +
      
        
          Γ
        
        
          i
          m
        
        
          k
        
      
      
        
          Y
        
        
          m
        
      
      )
    
  

(XY)k=Xi(iY)k=Xi(Ykxi+ΓimkYm)

3 条关于 “Hello MathJax!!”的评论

  1. Please note that You Can Include math in your Post:
    for example,
    the roots of the real polynomial $f(x)=ax^2+bx+c$ is
    [
    x_{1,2}=frac{-bpm sqrt{b^2-4ac}}{2a}.
    ]

回复 awj141 取消回复

您的邮箱地址不会被公开。 必填项已用 * 标注

*

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理