共形平坦的黎曼曲面的共形函数所满足的方程

$\newcommand{\rd}{\mathrm{d}}\newcommand{\set}[1]{\left\{#1\right\}}\newcommand{\Lp}{\Delta\,}$事实上, 假设$\rd s^2=g_{ij}\rd x^i\rd x^j$是$M^2=(\Omega,g)$上的Riemann度量. 要使$M^2$ 是共形平坦的, 那么
\[
\rd s^2=g^{ij}\rd x_i\rd x_j=e^{2\lambda u}\left((\rd x_1)^2+(\rd x_2)^2\right).
\]
下面, 我们用活动标架法来计算$M^2$的高斯曲率$K$. Continue Reading