Hilbert第四问题与射影平坦流形的分类

Hilbert度量[1]

在$\R^n$中一凸区域$\Omega$上, Hilbert定义了所谓的Hilbert度量:
\[
d_\Omega(x,y)=\frac{1}{2}\log[a,x,y,b]=\frac{1}{2}\log\frac{|y-a||x-b|}{|x-a||y-b|},\quad x,y\in\Omega,\: a,b\in\pt\Omega.
\]
特别地,
\[
(\Omega,d_\Omega)=\begin{cases}
\text{Minkowski geometry},&\Omega 中心对称\\
\text{Lobachevskii geometry},&\Omega是椭球\\
\text{hyperbolic geometry(Klein模型)},&\Omega是单位球B^n(1).
\end{cases}
\]
Continue Reading

常曲率Randers度量的分类

我们知道, 在黎曼几何中, 关于常截面曲率的完备黎曼流形(即空间形式)的分类已经完全解决:

定理 1. 对每个$c\in\R$以及所有的$n\in\Z^+$, 都存在唯一的(只相差一个等距)的单连通的$n$为空间形式, 使得其常截面曲率为$c$.

证明 . c.f. [伍鸿熙1989] P70 Thm1 与 P97 Thm10.

2004年, D, Bao, C, Robles & Z, Shen 证明了关于常旗曲率的Randers度量的分类定理, 证明主要依赖于如下结果:
Continue Reading