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CHAPTER 1

Curves

1. Examples, Arclength Parametrization

We say a vector functioh (a, b) — R3is €% (k = 0,1,2,...) if f and its firstk derivativesf’, f’, ...,
6 are all continuous. We sdyis smoothif f is ek for every positive integek. A parametrized curves a
@3 (or smooth) mape: I — R3 for some intervall = (a, b) or [a, b] in R (possibly infinite). We say is
regularif a’(z) # Oforallz € I.

We can imagine a particle moving along the pathwith its position at time given bya(z). As we
learned in vector calculus,

da ot +h)—a)
/
— 2% _ jim & —ed)
=7 = 7

is thevelocityof the particle at time. The velocity vectow’(¢) is tangent to the curve at(r) and its length,
le’()]], is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is a parametrized line: Given poiatsl Q in
R3, we letv = @ = @Q — P and seix(t) = P +tv,t € R. Note thate(0) = P, (1) = Q,

and for0 < ¢ < 1, a(¢) is on the line segmen® Q. We ask the reader to check in Exercise 8 that of
all paths fromP to Q, the “straight line path& gives the shortest. This is typical of problems we

shall consider in the future.

(b) Essentially by the very definition of the trigopnometric functions cos and sin, we obtain a very natural

parametrization of a circle of radius as pictured in Figure 1.1(a):

a(r) = a(cost,sint) = (acost,asint), 0<t <2x.

a cogt, a sint)
(a cogt, b sint)

t
b
!
~—a— \\Ra—»

(@) (b)

FIGURE1.1
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(c) Now, ifa,b > 0 and we apply the linear map
T:R?> - R2, T(x,y) = (ax,by),

we see that the unit circte? +y2 = 1 maps to the ellipse?/a>+y?/b? = 1. SinceT (cost, sint) =
(a cost, b sint), the latter gives a natural parametrization of the ellipse, as shown in Figure 1.1(b).
(d) Consider the two cubic curves R? illustrated in Figure 1.2. On the left is thmuspidal cubic

=tx

Y234 X2

y2=x3

(@) (b)
FIGURE1.2

y2 = x3, and on the right is theodal cubicy? = x34x2. These can be parametrized, respectively,
by the functions

at)= (%1% and  «() = (% —1,1(:2 - 1)).

(In the latter case, as the figure suggests, we see that the liaerx intersects the curve when
(tx)?> = x2(x + 1), s0x = 0orx =12 —1.)

FIGURE1.3
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(e) Now consider théwisted cubidn R3, illustrated in Figure 1.3, given by
a(t) = (t,1%,13), teR.

lts projections in thexy-, xz-, and yz-coordinate planes are, respectively= x2, z = x3, and
z2 = y3 (the cuspidal cubic).

(f) Our next example is a classic called tbgcloid It is the trajectory of a dot on a rolling wheel
(circle). Consider the illustration in Figure 1.4. Assuming the wheel rolls without slipping, the

“

O

FIGURE1.4

distance it travels along the ground is equal to the length of the circular arc subtended by the angle
through which it has turned. That is, if the radius of the circle and it has turned through angle
t, then the point of contact with the-axis, Q, isat units to the right. The vector from the origin to

/ R
C a7
P t>acost
P"a"s',i'rifdj

FIGURE1.5

the pointP can be expressed as the sum of the three ve@)sQ—C), andag (see Figure 1.5):
0P =00 + 0C +CP
= (at,0) + (0,a) + (—asint, —a cost),
and hence the function
a(t) = (at —asint,a —acost) = a(t —sint,1 —cost), t€R

gives a parametrization of the cycloid.

(g) A (circular) helix is the screw-like path of a bug as it walks uphill on a right circular cylinder at a
constant slope or pitch. If the cylinder has radiusnd the slope i%/a, we can imagine drawing a
line of that slope on a piece of pap®ta units long, and then rolling the paper up into a cylinder.
The line gives one revolution of the helix, as we can see in Figure 1.6. If we take the axis of the
cylinder to be vertical, the projection of the helix in the horizontal plane is a circle of radiaisd
SO0 we obtain the parametrizatiesir) = (a cost, a sint, bt).




CHAPTER1. CURVES

>
?é

2nh

2ma

FIGURE 1.6

Brief review of hyperbolic trigonometric functions. Just as the circle? + y? = 1 is parametrized
by (cos#, sinf), the portion of the hyperbola? — y? = 1 lying to the right of they-axis, as shown
in Figure 1.7, is parametrized jgoshr, sinh¢), where

t —t t ot
cosht = % and sinhy = & 2e

sinht 1
By analogy with circular trigonometry, we set tanee —— and sech = ——. The followin
y 9y g y coshr coshr 9

/(cosh t, sinh-

FIGURE1.7

formulas are easy to check:

cosit ¢t —sinktz =1, tankt 7 +seclHr =1

sinH (1) = coshy, cosh(z) = sinht, tanH(r) = secH ¢, secl(r) = —tanhr sechy.
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(h) When a uniform and flexible chain hangs from two pegs, its weight is uniformly distributed along
its length. The shape it takes is called¢atenary! As we ask the reader to check in Exercise 9,
the catenary is the graph ¢f(x) = C cosh(x/C), for any constanC > 0. This curve will appear

FIGURE1.8

numerous times in this course. \Y

Example 2. One of the more interesting curves that arises “in nature” igrdmrix.> The traditional
story is this: A dog is at the end oflaunit leash and buries a bone (@t 1) as his owner begins to walk
down thex-axis, starting at the origin. The dog tries to get back to the bone, so he always pulls the leash
taut as he is dragged along the tractrix by his owner. His pulling the leash taut means that the leash will be
tangent to the curve. When the master igza0), let the dog’s position béx(z), y(¢)), and let the leash

¢(0,1)

(x,y)

FIGURE1.9

make angleé (¢) with the positivex-axis. Then we have () = ¢ + cosf(t), y(t) = sinf(¢), so

dy ()  cosh(t)d' ()

tanf(t) = — = = :
anb) = 0 =T = T=sn8e ()

Therefore,0’(t) = sinf(¢). Separating variables and integrating, we hgwéd/siné = [ dr, and so

t = —In(csch + cotf) + ¢ for some constant. Sincef = x/2 whent = 0, we see that = 0. Now,
1 + cos# 2 cos?(6/2) L
. = — = cot(6/2), we can rewrite this as= Intan(8/2).
siné 2sin(6/2) co96/2) 16/2) 6/2)
Thus, we can parametrize the tractrix by

«(f) = (cost + Intan(6/2),sinf), 7/2<6 <.

since csd® + cotf =

lFrom the Latincat'enachain.
2From the Latirtrahere, tractusto pull.
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FIGURE2.2

a normal slice. We have(0) = P anda’(0) = V. Then since the curve lies in the plane spanned @)
andV, the principal normal of the curve & must be+n(P) (+ if the curve is curving towards, — if it's
curving away). Sincénea(s)) - T(s) = 0 for all s near0, applying Lemma 2.1 of Chapter 1 yet again, we

have:
) +1(P) =«kN-n(P)=T/(0)-n(P) = —-T(0) - (near)’(0) = —Dyn(P)-V.
This leads us to study the directional derivatgn(P) more carefully.

Proposition 2.1. For anyV € Tp M, the directional derivativdyn(P) € Tp M. Moreover, the linear
mapSp:TpM — Tp M defined by
Sp(V) = —Dyn(P)
is asymmetriclinear map; i.e., forany,V € Tp M, we have
() Sp(U)-V =U-Sp(V)
Sp is called theshape operataat P .

Proof. Forany curvex: (—¢, &) — M with «(0) = P anda’(0) = V, we observe thatea has constant
length1. Thus, by Lemma 2.1 of Chapter Dyn(P) - n(P) = (nea)’(0) - (nea)(0) = 0, soDyn(P) is in
the tangent plane t&f at P. ThatSp is a linear map is an immediate consequence of Proposition 2.3 of the

Appendix.
Symmetry is our first important application of the equality of mixed partial derivatives. First we verify

(*) whenU = Xy, V = X,. Note thatn - x, = 0, 500 = (N Xy)y = Ny - Xy + N+ Xyy. (Remember that
we’re writing n,, for Dy n.) Thus,
Sp(Xu) - Xy = =Dy, N(P) - Xy = =Ny - Xp = N~ Xy
=N-Xyp = =Ny Xy = =Dy, N(P) - Xy = Sp(Xp) - Xu.
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Next, knowing this, we just write out general vectdysandV as linear combinations of,, and x,: If
U = axy + bX, andV = cXy, + d Xy, then

Sp(U) -V = Sp(axy + bXy) - (cXy + dXy)
= (aSp(Xu) + bSp(Xy)) - (cXu + dXy)
=acSp(Xy) Xy +adSp(Xy) - Xy + bcSp(Xy) - Xy + bdSp (Xy) - Xy
=acSp(Xy) - Xy +adSp(Xy) - Xy + bcSp(Xy) - Xy + bdSp (Xy) - Xy
= (aXy + bXy) - (¢Sp(Xy) + dSp(xy)) = U-Sp(V),

as required. O
Proposition 2.2. If the shape operat®p is O for all P € M, thenM is a subset of a plane.

Proof. Since the directional derivative of the unit nornmails O in every direction at every point, we
haven,, = n, = 0 for any (local) parametrizatior(u, v) of M. By Proposition 2.4 of the Appendix, it
follows thatn is constant. (This is why we assume our surfaces are connected.)

. . 1
Example 2. Let M be a sphere of radius centered at the origin. Tham= —x(u, v), so for anyP,
a

1 1 . . . .

we haveSp(x,) = —n, = ——X, and Sp(Xy) = —Ny, = ——Xy, SOSp is —1/a times the identity map on
a a

the tangent plan&p M. V

It does not seem an easy task to give the matrix of the shape operator with respect to theg,basjs
But, in general, the proof of Proposition 2.1 suggests that we define the second fundamental form, as follows.
If U,V e Tp M, we set

Ilp(U,V) = Sp(U)- V.

Note that the formulaf() on p. 45 shows that the curvature of the normal slice in diredfigwith ||V| = 1)
is, in our new notation, given by

+k = —Dyn(P)-V = Sp(V)-V = llp(V,V).

As we did at the end of the previous section, we wish to give a matrix representation when we’re working
with a parametrized surface. As we saw in the proof of Proposition 2.1, we have

{= ”P(Xu,xu)= _Dxun'xu = Xyy - N
m = ”P(Xu,xv)= _Dxun Xy = Xpu N =Xyp-N = ”P(Xv,xu)
n=Ilp(Xy,Xp) = —Dx,N- Xy = Xpy * N.

(By the way, this explains the presence of the minus sign in the original definition of the shape operator.)

We then write
{ m Xyu -N Xyp - N
p = = )
m n Xyp N Xyp - N
If, as beforeU = ax, + bx, andV = cX, + d Xy, then

lp(U,V) =l p(axXy + bXy, Xy + dXy)
=acll p(Xy,Xy) + adll p(Xy, Xy) + bell p(Xy, Xy) + bd 1l p(Xy, Xy)
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= l(ac) + m(bc + ad) + n(bd).

In the event thatx,, X, } is an orthonormal basis f&fp M, we see that the matrix gl represents the
shape operata$p. But it is not difficult to check (see Exercise 2) that, in general, the matrix of the linear
mapSp with respect to the basix,, X, } is given by

-1
S =| 2 F tomy
PP F G m n

Remark. We proved in Proposition 2.1 th&t is a symmetric linear map. This means that its matrix
representation with respect to an orthonormal basis (or, more generally, orthogonal basis with vectors of
equal lengthill be symmetric: In this case the matrix is a scalar multiple of the identity matrix and the
matrix product remains symmetric.

By the Spectral Theorem, Theorem 1.3 of the Appendix, has two real eigenvalues, traditionally
denotedk(P), ko (P).

Definition. The eigenvalues ofp are called theprincipal curvaturesof M at P. Corresponding
eigenvectors are callgatincipal directions A curve inM is called aine of curvatureif its tangent vector
at each point is a principal direction.

Recall that it also follows from the Spectral Theorem that the principal directions are orthogonal, so we can
always choose an orthonormal basis T¢rM consisting of principal directions. Having done so, we can
then easily determine the curvatures of normal slices in arbitrary directions, as follows.

Proposition 2.3 (Euler's Formula) Let e;, e, be unit vectors in the principal directions Bt with
corresponding principal curvaturés andk,. Supposé/ = cosfe; + sinfe, for someb € [0,2r), as
pictured in Figure 2.3. Thethp (V,V) = ki co 6 + k, sin? 6.

€

\%

€

FIGURE2.3

Proof. This is a straightforward computation: Sinfg (e;) = k;e; fori = 1,2, we have
Hp(V,V) = Sp(V)-V = Sp(cosfie; + sinfle;) - (cosbe; + sinde;)
= (costkie; + sinbk,e,) - (cosbe; + sinfey) = ky cos 0 + k, sin? 6,
as required. O

On a sphere, all normal slices have the same (nonzero) curvature. On the other hand, if we look carefully
at Figure 2.2, we see that certain normal slices of a saddle surface are true lines. This leads us to make the
following
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Definition. If the normal slice in directiotY has zero curvature, i.e., ifgV,V) = 0, then we calvV
anasymptotic directiort A curve in M is called amasymptotic curvef its tangent vector at each point is an
asymptotic direction.

Example 3. If a surfaceM contains a line, that line is an asymptotic curve. For the normal slice in
the direction of the line contains the line (and perhaps other things far away), which, of course, has zero
curvature. V

Corollary 2.4. There is an asymptotic direction Btif and only ifki1k, < 0.

Proof. k, = 0 if and only if e, is an asymptotic direction. Now suppoke # 0. If V is a unit
asymptotic vector making angfewith e;, then we havé cos 6+k, si* = 0, and sotah = —k,/k»,
SO0 k1k, < 0. Conversely, ifk1k, < 0, takef with tanf = +.,/—k;1/k,, and thenV is an asymptotic
direction. O

Example 4. We consider the helicoid, as pictured in Figure 1.2. It is a ruled surface and so the rulings
are asymptotic curves. What is quite less obvious is that the family of helices on the surface are also
asymptotic curves. But, as we see in Figure 2.4, the normal slice tangent to the Helhaatan inflection

FIGURE2.4

point at P, and therefore the helix is an asymptotic curve. We ask the reader to check this by calculation in
Exercise 5. V

It is also an immediate consequence of Proposition 2.3 that the principal curvatures are the maximum
and minimum (signed) curvatures of the various normal slices. As&gmek;. Then
ki1coS 0 + kysin? 0 =ki(1—sin?0) +kosi? 0 =k + (ko —k1)Si? 0 < ky

(and, similarly,> k,). Moreover, as the Spectral Theorem tells us, the maximum and minimum occur at
right angles to one another. Looking back at Figure 2.2, where the slices are taken at angles in increments
of /8, we see that the normal slices that are “most curved” appear in the third and seventh frames; the
asymptotic directions appear in the second and fourth frames. (Cf. Exercise 8.)

40f courseV # 0 here. See Exercise 23 for an explanation of this terminology.
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Next we come to one of the most important concepts in the geometry of surfaces:

Definition. The product of the principal curvatures is called Gaussian curvatureK = detSp =
k1k,. The average of the principal curvatures is calledrtiean curvature H = %tr Sp = %(kl + k).
We sayM is aminimal surfaceéf H = 0 andflatif K = 0.

Note that whereas the signs of the principal curvatures change if we reverse the direction of the unit normal
n, the Gaussian curvatur€, being the product of both, is independent of the choice of unit normal. (And
the sign of the mean curvature depends on the choice.)

Example 5. It follows from our comments in Example 1 that both a plane and a cylinder are flat surfaces:
In the former caseSp = O for all P, and, in the latter, defp = 0 for all P since the shape operator is
singular. V

Example 6. Consider the saddle surfagés, v) = (u, v, uv). We compute:

Xu = (1,0, U) qu = (0, 0,0)
XU = (0, 1, M) Xuv = (0, O, 1)
1
N=———(-v,—u,l Xvv = (0,0,0),
m( ) XY ( )

and so
1

E=1+v* F=uv, G=14+u? and t=n=0m= —— .
V14 u? +v?

Thus, withP = x(u, v), we have

1+v2  wv 1 0 1
uv 14+ u M1+ uz24+02 |1 0
so the matrix of the shape operator with respect to the agix, } is given by
Sp = 1511, — 1 —uv 1 +u?
P 1)_(1—1—1,12—1—1)2)3/2 1+v2 —uv |’
(Note that this matrix is, in general, not symmetric.)

With a bit of calculation, we determine that the principal curvatures (eigenvalues) are

—uv + /(1 +u2)(1 + v2) —uv — /(1 + u2)(1 + v?)
k1 = and kyr = ,
(1 + M2 + U2)3/2 (1 + u2 + U2)3/2
andK = detSp = —1/(1 4+ u? + v?)2. Note from the form of Ip that theu- andv-curves are asymptotic
curves, as should be evident from the fact that these are lines. With a bit more work, we determine that the

principal directions, i.e., the eigenvectors&f, are the vectors

V14+u2x, £ vV1+v2x,.

(It is worth checking that these vectors are, in fact, orthogonal.) The corresponding curves inplame
have tangent vectorfs/1 + u2, £+/1 + v2) and must therefore be solutions of the differential equation

dv :l:\/l—i-vz

du = Ttuz
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If we substitutev = sinhg, [ dv/+/1 +v2 = [ dq = q = arcsinhv, so, separating variables, we obtain

/ D _ i/ du__. i.e., arcsinhh = £ arcsinhu + ¢
Since sinlix 4+ y) = sinhx coshy + coshx sinhy, we obtain
v = sinh(£ arcsinhu + ¢) = £(coshe)u + (sinhc) v 1 + u?.

Whenc = 0, we getv = fu (as should be expected on geometric grounds)c #aries through nonzero
values, we obtain a family of hyperbolas. Some typical lines of curvature on the saddle surface are indicated
in Figure 2.5. V

FIGURE 2.5

Definition. Fix P € M. We sayP is anumbilic® if k; = k». If ky = k, = 0, we sayP is aplanar
point. If K = 0 but P is not a planar point, we sal is aparabolic point If K > 0, we sayP is anelliptic
point, and if K < 0, we sayP is ahyperbolic point

Example 7. On the “outside” of a torus (see Figure 1.3), all the normal slices curve in the same direction,
so these are elliptic points. Now imagine laying a plane on top of a torus; it is tangent to the torus along
the “top circle,” and so the unit normal to the surface stays constant as we move around this curve. For
any pointP on this circle andv/ tangent to the circle, we havep (V) = —Dyn = 0, soV is a principal
direction with corresponding principal curvatude Thus, these are parabolic points. On the other hand,
consider a poin® on the innermost band of the torus. At such a point the surface looks saddle-like; that is,
with the unit normal as pictured in Figure 2.6, the horizontal circle (going around the inside of the torus) is a

fn\m

FIGURE 2.6

line of curvature with positive principal curvature, and the vertical circle is a line of curvature with negative
principal curvature. Thus, the points on the inside of the torus are hyperbolic poiits.

5From the LatinumbilTcusnavel.
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Remark. Gauss’s original interpretation of Gaussian curvature was the following: Imagine a small
curvilinear rectanglé® at P € M with sidesh; andh, along principal directions. Then, since the principal
directions are eigenvectors of the shape operator, the imaffeuofler the Gauss map is nearly a small
curvilinear rectangle at(P) € X with sidesk s, andk,h,. Thus,K = kik, is the factor by whicm
distorts signed area as it maps to X. (Note that for a cylinder, the rectangle collapses to a line segment;
for a saddle surface, orientation is reversedl@and so the Gaussian curvature is negative.)

Let’s close this section by revisiting our discussion of the curvature of normal slices. Supjpse
arclength-parametrized curve lying a#i with «(0) = P andea’(0) = V. Then the calculation in formula
() on p. 45 shows that

Hp(V,V) =«N-n;

i.e., llp(V,V) gives the component of the curvature veaotd of « normalto the surfaceM at P, which
we denote by, and call thenormal curvatureof « at P. What is remarkable about this formula is that it
shows that the normal curvature depends only on the directienaifP? and otherwise not on the curve.
(For the case of the normal slice, the normal curvature is, up to a sign, all the curvature.) We immediately
deduce the following

Proposition 2.5 (Meusnier's Formula) Let « be a curve orM passing throughP with unit tangent
vectorV. Then

Hp(V,V) =k, = K COSP,
whereg is the angle between the principal normé/,of « and the surface normal, at P .
In particular, ife is an asymptotic curve, then its normal curvatur@ & each point. This means that,

so long asc # 0, its principal normal is always orthogonal to the surface normal, i.e., always tangent to the
surface.

Example 8. Let's now investigate a very interesting surface, called gheudosphereas shown in
Figure 2.7. It is the surface of revolution obtained by rotating the tractrix (see Example 2 of Chapter 1,

FIGURE2.7

Section 1) about the-axis, and so it is parametrized by
X(u,v) = (u — tanhu, sechu cosv, sechu sinv), u>0,vel02nr).

Note that the circles (of revolution) are lines of curvature: Either apply Exercise 15 or observe, directly, that
the only component of the surface normal that changes as we move around the circle is normal to the circle
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in the plane of the circle. Similarly, the various tractrices are lines of curvature: In the plane of one tractrix,
the surface normal and the curve normal agree.
Now, by Exercise 1.2.5, the curvature of the tractrix is= 1/ sinhu; sinceN = —n along this curve,
we havek; = k, = —1/sinhu. Now what about the circles? Here we have= 1/sechu = coshu,
but this is not the normal curvature. The angldetweenN andn is the supplement of the angtewe
see in Figure 1.9 of Chapter 1 (to see why, see Figure 2.8). Thus, by Meusnier's Formula, Proposition 2.5,

GS\Q\
|
n/N

FIGURE 2.8

we havek, = k, = kcos¢p = (coshu)(tanhu) = sinhu. Amazingly, then, we hav&k = kik, =
(—1/sinhu)(sinhuy) = —-1. V
Example 9. Let's now consider the case of a general surface of revolution, parametrized as in Example
2 of Section 1, by
X(u,v) = (f(u)cosv, f(u)sinv, g(u)),
where f'(u)? + g’(u)®> = 1. Recall that thei-curves are calledneridiansand thev-curves are called

parallels Then

Xy = (f'(u)cosv, f'(u)sinv, g'(u))

— f(u) sinv, f(u) COSv,O)
—g'(u) cosv, —g'(u) sinv, f”(u))
S (u) cosv, " (u)sinv, g"(u))
— f'(u) sinv, f'(u) cosv, 0)

— f(u) cosv, — f'(u) sinv, 0),

Xy =

n

X
<
<
Il
~ A~ A~~~ o~

Xyy =
Xyy =
and so we have
E=1, F=0, G=fw? and {=f'wg"u)—f"wgw), m=0, n=fugu).
By Exercise 2.2.1, thekhy; = f'(u)g"(u) — f"(u)g’'(u) andk, = g’(u)/f(u). Thus,

gw _ S
Su) Sfu)
since from £/ (u)? + g’(u)? = 1 we deduce thay”’(u) (1) + g’(u)g” (1) = 0, and so

g’ wg"w) — f"wg' w)? = —(f'w)? + &' ) f"(u) = = f" ().

K = klkz = (f/(u)g”(u) - f//(u)g/(u))
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Note, as we observed in the special case of Example 8, that on every surface of revolution, the meridians
and the parallels are lines of curvatureV

*1.

42,

3.

*5.

*6.

EXERCISES 2.2

Check that if there are no umbilic points and the parameter curves are lines of curvaturé, taen
m = 0 and we have the principal curvatures = ¢/E andk, = n/G. Conversely, prove that if
F = m = 0, then the parameter curves are lines of curvature.

a. Show that the matrix representing the linear agp7p M — Tp M with respect to the basis

{Xu, Xy } IS
-1
=l — E F t m
PP = F G m n |’

(Hint: Write Sp(Xy) = axy, + bx, andSp (Xy) = ¢Xy + d Xy, and use the definition df, m, and
n to get a system of linear equations tqrb, ¢, andd.)

2
b. DeducethaK:M.
EG - F?

Compute the second fundamental forrp bf the following parametrized surfaces. Then calculate the
matrix of the shape operator, and determihand K .
a. thecylinderx(u,v) = (a cosu, a sinu, v)

*p.  the torus:x(u,v) = ((@ + b cosu) cosv, (a + b cosu) sinv,bsinu) (0 < b < a)

c. the helicoid:x(u, v) = (u cosv,u sinv, bv)

*d. the catenoidx(u, v) = a(coshu cosv, coshu sinv, u)

e. the Mercator parametrization of the sphetet, v) = (sechu cosv, sechu sinv, tanhu)
f. Enneper’s surfacex(u,v) = (u —u3/3 + uv?, v —v3/3 + u?v,u?> —v?)

Find the principal curvatures, the principal directions, and asymptotic directions (when they exist) for
each of the surfaces in Exercise 3. ldentify the lines of curvature and asymptotic curves when possible.

Prove by calculation that any one of the heliegg) = (a cost, a sint, bt) is an asymptotic curve on
the helicoid given in Example 1(b) of Section 1. Also, calculate how the surface narof&nges as
one moves along a ruling, and use this to explain why the rulings are asymptotic curves as well.

Calculate the first and second fundamental forms of the pseudosphere (see Example 8) and check our
computations of the principal curvatures and Gaussian curvature.

Show that a ruled surface has Gaussian curvaure0.

a. Prove that the principal directions bisect the asymptotic directions at a hyperbolic point. (Hint:
Euler's Formula.)

b. Prove that if the asymptotic directionsMf are orthogonal, theM is minimal. Prove the converse
assumingM has no planar points.

Letk, (6) denote the normal curvature in the direction making afighéth the first principal direction.
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10.

11.

12.

13.

#14.
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2w

1
a. ShowthaiH:—/ kn(60)do.
2w 0

1
b. Show thatif = > (Kn(e) +n (0 + %)) for anyé.
(More challenging) Show that, more generally, for ayand m > 3, we have

H=1 (K,,(e)ﬂ,,(eﬂ—”) +~.+K,,(e+w)).
m m m

Consider the ruled surfadd given byx(u, v) = (v cosu, v sinu,uv), v > 0.

a. Describe this surface geometrically.

b. Find the first and second fundamental forms and the Gaussian curvaiMre of
c. Check that the-curves are lines of curvature.
d

Proceeding somewhat as in Example 6, show that the other lines of curvature are given by the

equationv+/1 + u2 = ¢ for various constants. Show that these curves are the intersectiotof
with the spheres? + y2 + z2 = ¢2. (It might be fun to use Mathematica to see this explicitly.)

The curvex(t) = x(u(t), v(t)) may arise by Writingfﬁ I @
u

and solving a differential equation to
d u'(t)

relateu andv either explicitly or implicitly.
a. Show thaix is an asymptotic curve if and only #(u')?> + 2mu’v’ + n(v’)> = 0. Thus, if
4 2m% 4 n(9)? = 0, thene is an asymptotic curve.
Eu' + Fv' Fu' + GV

/

b. Show that is a line of curvature if and only i = 0. Give the appropri-

L' +mv" mu’ + nv
ate condition in terms afv/du.
c. Deduce that an alternative condition éoto be a line of curvature is that
)2 —u'v' ()?
E F G |=0.
14 m n

a. Apply Meusnier's Formula to a latitude circle on a sphere of radits calculate the normal
curvature.
b. Prove that the curvature of any curve lying on the sphere of radéasisfiesc > 1/a.

Prove or give a counterexample:Mf is a surface with Gaussian curvatuke> 0, then the curvature
of any curveC C M is everywhere positive. (Remember that, by definitior; 0.)

Suppose that for everf € M, the shape operatd¥p is some scalar multiple of the identity, i.e.,
Sp(V) =k(P)VforallV e Tp M. (Here the scalakt(P) may well depend on the poit.)
a. Differentiate the equations

Dy n = n, = —kXy

U

Dy n = n, = —kXy

v

appropriately to determink, andk, and deduce that must be constant.
b. We showed in Proposition 2.2 that is planar wherk = 0. Show that wherk # 0, M is (a
portion of) a sphere.
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15. a. Prove thak is a line of curvature inV if and only if (nea)’(z) = —k(t)e/(¢), wherek(z) is the
principal curvature at(¢) in the directionx’(z). (More colloquially, differentiating along the curve
o, We just writen’ = —ka'.)

b. Suppose two surfacdg and M * intersect along a curv€. Suppose is a line of curvature i/ .
Prove thatC is a line of curvature iV * if and only if the angle betweeM and M * is constant
alongC. (In the proof of<—=, be sure to include the case thet and M * intersect tangentially
alongC.)

16. Prove or give a counterexample:
a. Ifacurveis both an asymptotic curve and a line of curvature, then it must be planar. (Hint: Along
an asymptotic curve that is not a line, how is the Frenet frame related to the surface normal?)
b. Ifacurve is planar and an asymptotic curve, then it must be a line.

17. a. How isthe Frenet frame along an asymptotic curve related to the geometry of the surface?
b. SupposeK(P) < 0. If C is an asymptotic curve witk(P) # 0, prove that its torsion satisfies
|t(P)| = /—K(P). (Hint: If we choose an orthonormal bagld, V} for Tp (M) with U tangent
to C, what is the matrix folSp? See the Remark on p. 47.)

18. Continuing Exercise 17, show thaiki P) < 0, then the two asymptotic curves have torsion of opposite
signs atP.

19. Prove that the only minimal ruled surface with no planar points is the helicoid. (Hint: Consider the
curves orthogonal to the rulings. Use Exercises 8b and 1.2.20.)

20. Supposé/ C R3isopen and: U — R3 is a smooth map (of rank) so thatx,, X,, andx,, are always

orthogonal. Then the level surfaces= const,v = const,w = const form driply orthogonal system

of surfaces.

a. Show that the spherical coordinate mappxtg, v, w) = (u Sinv CoOSw, u Sinv Sinw, u COSV)
(u>0,0<v<m0<w < 2x) furnishes an example.

b. Prove that the curves of intersection of any pair of surfaces from different systems (e.ggnst
andw = const) are lines of curvature in each of the respective surfaces. (Hint: Differentiate the
various equations,, - X, = 0, Xy - Xy = 0, Xy, - Xy = 0 with respect to the missing variable. What
are the shape operators of the various surfaces?)

21. In this exercise we analyze the surfaces of revolution that are minimal. It will be convenient to work
with a meridian as a graply (= i(u), z = u) when using the parametrization of surfaces of revolution

given in Example 9.
a. Use Exercise 1.2.4 and Proposition 2.5 to show that the principal curvatures are

ki = s and k _! !
1= (1 + h'2)3/2 27 T+ h2

. Deduce tha#d = 0 if and only if h(u)h" (u) = 1 + K’ (u)>.
c. Solve the differential equation. (Hint: Either substitat@) = In 2 (u) or introducew (u) = 7' (u),
find dw/dh, and integrate by separating variables.) You should find/that = %cosl"(cu +b)
for some constants andc.
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22. By choosing coordinates R* appropriately, we may arrange thAtis the origin, the tangent plane
Tp M is thexy-plane, and the- and y-axes are in the principal directions &t
a. Show that in these coordinaté6 s locally the graplr = f(x,y) = 2 (k1x2 + k2y?) + €(x, y),

where |im @
x,y—0 x2 4 y?

f(x,y) = £(0,0) + fx(0,0)x + £,(0,0)y +
2 (frx(0,00x% + 2 £1,(0,0)xy + £3,(0,0)y%) + €(x, ),

= 0. (You may start with Taylor's Theorem: If is €2, we have

where |lim Ez(x’y)z =0.)
xX,y—>0 X +Yy

b. Show thatifP is an elliptic point, then a neighborhood Bfin M N Tp M is just the origin itself.
What happens in the case of a parabolic point?

c. (More challenging) Show that iP is a hyperbolic point, a neighborhood 8fin M N Tp M is
a curve that crosses itself & and whose tangent directions Atare the asymptotic directions.
(Hints: Work in coordinategx, u) with y = ux. Show that in thexu-plane the curve has the
equation0 = g(x,u) = %(kl + kou?) + h(x,u), whereh(0,u) = 0 for all u, so it consists
of two (C') curves, one passing through, \/—k;/k,) and the other through0, —/—k1/k2).
Show, moreover, that if two curves pass through the same faing) in the xu-plane, then the

corresponding curves in they-plane are tangent &b, 0).6)

23. LetP € M be anon-planar point, and ¥ > 0, choose the unit normal so th&atn > 0.

a. We define thé®upin indicatrix to be the conic ilp M defined by the equationgiV,V) = 1.
Show that if P is an elliptic point, the Dupin indicatrix is an ellipse; # is a hyperbolic point,
the Dupin indicatrix is a hyperbola; and K is a parabolic point, the Dupin indicatrix is a pair of
parallel lines.

b. Show thatifP is a hyperbolic point, the asymptotes of the Dupin indicatrix are givenpiMl V) =
0, i.e., the set of asymptotic directions.

Cc. SupposeV is represented locally nedt as in Exercise 22. Show that for small positive values
of ¢, the intersection oM with the planez = ¢ “looks like” the Dupin indicatrix. How can you
make this statement more precise?

24. Suppose the surfaddl is given nearP as a level surface of a smooth functigh R> — R with
VF(P) # 0. Aline L c R3 is said to have (at leasB-point contactwith M at P if, given any
linear parametrizatiome of L with «(0) = P, the functionf = foa vanishes to ordek — 1, i.e.,
£(0) = f/(0) = --- = f*~D(0) = 0. (Such a line is to be visualized as the limit of lines that intersect
M at P and atk — 1 other points that approach.)

a. Show that. has2-point contact withM at P if and only if L is tangentto\f atP,i.e.,L C Tp M.

b. Show thatl. has3-point contact withM at P if and only if L is an asymptotic direction af.
(Hint: It may be helpful to follow the setup of Exercise 22.)

c. (Challenge) Assume is a hyperbolic point. What does it mean fbtto have4-point contact with
M atP?

%Here we have “blown up” the origin in order to keep track of the different tangent directiondl@liang-upconstruction is
widely used in topology and algebraic geometry.
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3. The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory

We now wish to proceed towards a deeper understanding of Gaussian curvature. We have to this point

considered only the normal components of the second derivatjygs<,»,, andx,,. Now let's consider
themin toto. Since{x,, X,,n} gives a basis foR?, there are function§ %, I,2,, [}, = T2, T,% =T,
Iy, andl'}; so that

Xuu = Ty Xu + Ty Xo + 4N
(1) Xup = DyoXy + DXy + mn

Xpv = DypXu + TyoXy + 1N,
(Note thatx,, = Xy, dictates the symmetrieE,; = I')5,.) The functionsI'y, are calledChristoffel
symbols

Example 1. Let's compute the Christoffel symbols for the usual parametrization of the sphere. By
straightforward calculation we obtain
Xy = (COSu cosv, cosu Sinv, — sinu)
Xy = (—sinu sinv, sinu cosv, 0)
Xuyu = (—Sinu cosv, — sinu sinv, — cosu) = —X(u, v)
Xyy = (—COSu Ssinv, coOsu Cosv, 0)
Xyy = (— Sinu cosv, — sinu sinv, 0) = — sinu(cosv, sinv, 0).

(Note that thes-curves are great circles, parametrized by arclength, so it is no surprise that the acceleration
vectorx,,, is inward-pointing of length. Thev-curves are latitude circles of radius &inso, similarly, the
acceleration vectax,, points inwards towards the center of the respective circle.)

FIGURE3.1

Sincex,,, lies entirely in the direction oh, we havel'\;, = T',,, = 0. Now, by inspectionx,, =
cotuxy, sol',; = 0 andI',; = cotu. Last, as we can see in Figure 3.1, we hayg = — sinu cosux, —
sifun, soT% = —sinucosy andl'Y, =0. V

Now, dotting the equations irf\ with x,, andx, gives
Xuu Xy =T, E+ T, F
Xy * Xy =L, F +T,,G

Xyp - Xy = T JyE+ T F
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Xuv . XU = Ful,lvF + FMU'UG

Xop Xy = Ty E + T F
Xpp * Xy = Ty F + T,0G.
Now observe that
Xuy * Xy = %(Xu “Xu)u = %Eu
Xyy - Xy = %(Xu Xu)y = EEU
Xyv * Xy = %(Xv Xp)u = §Gu
Xuu * Xo = Ky * Xp)y — Xy = Xyp = Fy — 5 Ey
Xpy * Xu = Xy " Xo)v — Xyp * Xy = Fv_jGu
Xpp * Xy = %(XU Xy)y = %Gv

Thus, we can rewrite our equations as follows:

— - - - - - - - _._1 —
E F||Lh|_ 1 Ey _ Lyw | _|E F 1 Ey
_F G_ _Fuvu_ _Fu_%Ev _Fuvu_ _F G _Fu %Ev
— - - - — — — _1 —
@ E F | Ty | _| 2Ev . Lyy | _|E F SEy
| F G || T ] | 36 Th | |F G| | 36u
— [ — — — — — _1 —
E F||T|_| Fo—5Gu . Lyy | _|E F Fy — 3Gy
| F G|y ] | 36 TS| LF G| | 3G

What is quite remarkable about these formulas is that the Christoffel symbols, which tell us about the
tangential component of the second derivatixgs can be computeplist from knowing E, F, andgG, i.e.,
the first fundamental form.

Example 2. Let’'s now recompute the Christoffel symbols of the unit sphere and compare our answers
with Example 1. Sincé& = 1, F = 0, andG = sir? u, we have

txl [t o Jfo] [o
T | [0 csCu |0 0
Lyp [ _ |1 0 0 _| 0
L2 0 cs@u || sinucosu cotu
_Fv’{,_ _ (1 0 |[—sinucosu | —sinucosu
| Ty [0 csCu || 0 0 '
Thus, the only nonzero Christoffel symbols dtg, = I')}, = cotu andI'}y, = —sinu cosu, as before.

\Y%

By Exercise 2.2.2, the matrix of the shape operatprwith respect to the bas{x,,, Xy } is

a c| |EF - t m| 1 LG —mF mG—-nF
bd| |F G m n| EG-—F2| —4F+mE —mF+nE |’
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Note that these coefficients tell us the derivatives wfith respect tar andv:

Ny = Dy,N = —Sp(Xy) = —(axXy + bXy)

(Ff) Ny = Dy,N = —Sp(Xy) = —(cXy + dXy).

We now differentiate the equations) (@gain and use equality of mixed partial derivatives. To start, we
have

Xuuv = (Fyp)vXu + Dy Xuw + (Fyg)vXo + Dy Xow + o + €0y
= () oXu + Tyo (TaoXu + Tyl Xe + mn) + (D0 oXe + Dot (TyeXu + Ty X + 1)
+ Lyn — L(cXy + dXy)
= ((Fuuu)v + Fuuu 1—‘uuv + Fulit erf) - ZC)Xu + ((Fulit)v + Furft 1—‘uvv + Fuvu 1—‘vvv - Zd)XU
+ (Tgym + Typyn + €y)n,

and, similarly,

Xuvu = ((Cyfe)u + Typ Ty + T Dot — ma) Xy + (T0)u + Ty Ty + T Tt — mb)x,

uv- uu uv- uv

+ (£T,y + mL,, + my)n.
Sincexyuy = Xuvu, We compare the indicated components and obtain:

(Xu): (Furft)v + Fuvurvrf) —Le = (Fuuv)u + 1—‘uvvl—‘uuv —ma

(<>) (Xv): (Fulit)v + Fum Fu% + 1—‘uvu Fv% —td = (Fuvv)u + Fu% Fu1;4 + Fuvvru% —mb
(n): by +mD}y, +nlp, =my + LT +mI).

Analogously, comparing the indicated componentg,8f, = Xyv., We find:

(Xy): ) + LT + 000 —me = (Tf)u + T TH + T 0008 —na

v VUV Uu vV Uv

%0):  (C2)y +TETY —md = (T2)y + TETY —nb

UV ULV vv/u VU UU

(n): my +ml} +nl) =ny, + LT} +mIl}.

The two equations coming from the normal component give us the

Codazzi equations

€y —my = LTy + m(T,5 — ) —nT,),

my —ny =Ly +m(C), —T,5y) —nl).

. n —m? : . .
UsingK = % and the formulas above far, b, ¢, andd, the four equations involving thvg, and

Xy components ﬁeld the
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Gauss equations

+rpAr, + 0.0 =T AT, — (T

2
u uu- uv uu=- vv uv- uu ( uv)

2
+ ol + Ty — (Tyt)) " — Ty Tas -

v VUV Uu VUV Uv

For example, to derive the first, we use the equatibnabove:

(Fuvu)v - (Fuvv)u + 1_‘uuu l_‘uvv + l_‘uvu 1_‘vvv - Fuuvrulit - (Fuvv)2 =4{d —mb
. 1 ( E(ln —m?)
~ EG-—F? EG — F2

In an orthogonal parametrizatiod (= 0), we leave it to the reader to check in Exercise 3 that

{(—mF 4+ nE)+m(F —mE)) = = EK.

1 E, Gy
) K==7%¢ ((m)ﬁ(m)u)'

One of the crowning results of local differential geometry is the following

Theorem 3.1(Gauss’s Theorema EgregiumJThe Gaussian curvature is determined by only the first
fundamental form. That is, K can be computed from judt, F, G, and their first and second partial
derivatives.

Proof. From any of the Gauss equations, we see fatan be computed by knowing any one Bf
F, andG, together with the Christoffel symbols and their derivatives. But the equatigrsh¢w that the
Christoffel symbols (and hence any of their derivatives) can be calculated in teffhsFofandG and their
partial derivatives. [

Corollary 3.2. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points
are equal.

For example, the plane and cylinder are locally isometric, and hence the cylinder (as we well know)
is flat. We now conclude that since the Gaussian curvature of a sphere is nonzero, a sphere cannot be
locally isometric to a plane. Thus, there is no way to map the earth “faithfully” (preserving distance)—even
locally—on a piece of paper. In some sense, the Mercator projection (see Exercise 2.1.12) is the best we can
do, for, although it distorts distances, it does preserve angles.

The Codazzi and Gauss equations are rather opaque, to say the least. We obtained the convenient
equation §) for the Gaussian curvature from the Gauss equations. To give a bit more insight into the
meaning of the Codazzi equations, we have the following

Lemma 3.3. Suppose« is a parametrization for which the andv-curves are lines of curvature, with
respective principal curvaturés andk,. Then we have

(*) (o= soo k) and (k2 = o (k1 — ko)
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Proof. By Exercise 2.2.1{ = k1 E,n = kG, andF = m = 0. By the first Codazzi equation and the
equations f) on p. 58, we have

(k\)vE + ki1 Ey = by = kK ET,} —kaGT 2, = S Ey (k1 + k2),
and so

E
(k1)y = ﬁ(kz —k1).
The other formula follows similarly from the second Codazzi equatidn.

Let's now apply the Codazzi equations to prove a rather striking result about the general surface with
K = 0 everywhere.

Proposition 3.4. SupposeM is a flat surface with no planar points. Théhis a ruled surface whose
tangent plane is constant along the rulings.

Proof. SinceM has no planar points, we can choégse= 0 andk, # 0 everywhere. Then by Theorem
3.3 of the Appendix, there is a local parametrizatiordbfo that the:-curves are the first lines of curvature
and thev-curves are the second lines of curvature. This means first of alFthatm = 0. (See Exercise
2.2.1.) Now, since&; = 0, for any P € M we haveSp(x,) = 0, and son,, = 0 everywhere ana is
constant along the-curves. We also observe that= 11 (X, X)) = —Sp(Xy) - X, = 0.

We now want to show that the-curves are in facines Sincek; = 0 everywhere(k;), = 0 and,
sincek, # ki, we infer from Lemma 3.3 thak,, = 0. From the equations:] it now follows thatl’,}, = 0.
Thus,

is just a multiple ofk,,. Thus, the tangent vectay, never changes direction as we move alongtieairves,
and this means that thecurves must be lines. In conclusion, we have a ruled surface whose tangent plane
is constant along rulings. O

Remark. Flat ruled surfaces are often callddvelopable (See Exercise 10 and Exercise 2.1.11.) The
terminology comes from the fact that they can be rolled out—or “developed’—onto a plane.

Next we prove a strikingjlobal result about compact surfaces. (Recall that a subsRe a6 compact
if it is closed and bounded. The salient feature of compact sets is the maximum value theorem: A contin-
uous real-valued function on a compact set achieves its maximum and minimum values.) We begin with a
straightforward

Proposition 3.5. SupposeM C R3 is a compact surface. Then there is a pdint M with K(P) > 0.

Proof. BecauseM is compact, the continuous functiof(x) = ||x|| achieves its maximum at some
point of M, and so there is a poift € M farthest from the origin (which may or may not be insitie,
as indicated in Figure 3.2. Lef(P) = R. As Exercise 1.2.7 shows, the curvature of any cuwtve M
at P is at leastl /R, so—if we choose the unit normalto be inward-pointing—every normal curvature of
M at P is at leastl/R. It follows that K(P) > 1/R? > 0. (That is,M is at least as curved & as the
circumscribed sphere of radidstangent toM at P.) O
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FIGURE 3.2

The reader is asked in Exercise 17 to find surfaces of revolution of constant curvature. There are,
interestingly, many nonobvious examples. However, if we restrict ourselves to smooth surfaces, we have the
following beautiful

Theorem 3.6(Liebmann) If M is a smooth, compact surface of constant Gaussian curv&tLieen
K > 0 andM must be a sphere of radilig~/K .

We will need the following

Lemma 3.7 (Hilbert). SupposeP is not an umbilic point ané{(P) > k,(P). Supposé has a local
maximum atP andk, has a local minimum aP. ThenK(P) < 0.

Proof. We work in a “principal” coordinate parametrizationear P, so that thes-curves are lines of
curvature with principal curvature; and thev-curves are lines of curvature with principal curvatiee
Sinceky # k, and(ky)y = (k2), = 0 at P, it follows from Lemma 3.3 that, = G, =0 at P.

Differentiating the equations<§, and remembering th&k),, = (k2), = 0 at P as well, we havat P:

EUU

(k1)vy = ¥ (ko — k1) <0 (becausé; has a local maximum a?)

G
(k2)uu = 2uGu

and soE,, > 0 andG,,, > 0 at P. Using the equation«) for the Gaussian curvature on p. 60, we see that

(k1 —k2) >0 (becausé, has a local minimum aP),

—2KEG = Eyy + Gyy +a(u,v)Ey + b(u,v)Gy
for some functions: (1, v) andb(u, v). So we conclude that'(P) < 0, as desired. O

Proof of Theorem 3.6. By Proposition 3.5, there is a point whelg is positively curved, and since the
Gaussian curvature is constant, we must hive 0. If every point is umbilic, then by Exercise 2.2.14, we
know thatM is a sphere. If there is some non-umbilic point, the larger principal curvatyrechieves its
maximum value at some poit becauseVf is compact. Then, sinc&€ = k;k, is constant, the function
ko = K/kq must achieve its minimum & . SinceP is necessarily a non-umbilic point (why?), it follows
from Lemma 3.7 thak' (P) < 0, which is a contradiction. [J

7Since locally there are no umbilic points, the existence of such a parametrization is an immediate consequence of Theorem
3.3 of the Appendix.
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Remark. H. Hopf proved a stronger result, which requires techniques from complex analy&fsisia
compact surface topologically equivalent to a sphere and having cons¢amcurvature, then must be
a sphere.

We conclude this section with the analogue of Theorem 3.1 of Chapter 1.

Theorem 3.8 (Fundamental Theorem of Surface Theori)niqueness: Two parametrized surfaces
x,x*:U — R3 are congruent (i.e., differ by a rigid motion) if and onlylif= 1* andll = +Il*. Ex-
istence:Moreover, given differentiable functions, F, G, {, m, andn with E > 0 andEG — F? > 0 and
satisfying the Codazzi and Gauss equations, there exists (locally) a parametrized urfagewith the
respectiva andll.

Proof. The existence statement requires some theorems from partial differential equations beyond our
reach at this stage. The uniqueness statement, however, is much like the proof of Theorem 3.1 of Chapter
1. (The main technical difference is that we no longer are lucky enough to be working vwotithamormal
basis at each point, as we were with the Frenet frame.)

First, suppose* = Wox for some rigid motion¥: R3 — R3 (i.e., ¥(x) = Ax + b for someb € R3
and some x 3 orthogonal matrix4). Since a translation doesn't change partial derivatives, we may assume
thatb = 0. Now, since orthogonal matrices preserve length and dot product, weHfave ||x*|? =
A%, ||? = ||%«||> = E, etc., so |I= 1*. If det4 > 0, thenn* = An, whereas if de#l < 0, thenn* = —A4n.
Thus,£* = x5, - N* = AXyy, - (£An) = x££, the positive sign holding when dét> 0 and the negative
when detd < 0. Thus, IF = Ilifdet A > 0and II* = —Ilifdet 4 < 0.

Conversely, suppose= 1* and Il = +I1*. By composing«* with a reflection, if necessary, we may
assume that I&= [1*. Now we need the following

Lemma 3.9. Suppose anda™ are smooth functions d, b], viv,v3 andviv;Vv; are smoothly varying
bases foR3, also defined of0, b], so that

Vi(0) Vi (1) = Vi) vy () =gij(t).  i.j =123,

3 3
o) =) pievi(t)  and  «¥() =) pi()VF (D),

3 3
Vi) = qivi(0) and  Vi'(0) =) qyvi@), j=12.3.
i=1 i=1
(Note that the coefficient functions; andq;; are the same for both the starred and unstarred equations.)
If «(0) = a*(0) andv;(0) = v;(0),i = 1,2,3, thena(t) = a*(t) andv;(t) = v:(t) for allt < [0,b],
i=1,2,3.

Fix a pointug € U. By composingx* with a rigid motion, we may assume thatuy, we havex = x*,
Xu = X5, Xy = X;;, andn = n* (why?). Choose an arbitrary; € U, and joinug to u; by a pathu(z),
t € [0,b], and apply the lemma with = Xou, Vi = Xy°U, Vo = Xy°U, V3 = nou, p; = u;, and theg;;
prescribed by the equationg)@nd (). Since I= 1* and Il = I *, the same equations hold f@¥ = x*ou,
and sax(u;) = x*(uy) as desired. That is, the two parametrized surfaces are identichl.
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Proof of Lemma 3.9. Introduce the matrix function af
| | |
M(t) = | vi(t) va(t) vi() |.
| | |

and analogously foM * (). Then the displayed equations in the statement of the Lemma can be written as
M'(t)y=M@)Qt) and  M*(t) = M*(t)Q(1).

On the other hand, we hav® (1)TM(t) = G(t). Since thev;(t) form a basis forR3 for eacht, we
know the matrixG is invertible. Now, differentiating the equatiai(r)G~1(¢) = I yields (G~1)(t) =
—G Y 1)G'(t)G (1), and differentiating the equaticBi(r) = M (t)"M(¢) yieldsG'(t) = M'(t)"M(t) +
M@)"™M'(t) = Q(t)"G(t) + G(¢)Q(r). Now consider

(M*GIM™Y () = M*' ()G(@t) "M@)" + M* )G OO)M@) + M*()G(t) 'M'(1)"
= M*) QGO M)+ M* 1) (-G G'O)GH) ) M@)
+M* (OGO QO M)
= M*)Q()GH) T M) = M*)Gt) ' Q) M) — M* () Q)G () M)
+ M*()G() Q@)™ M) = O.
Since M(0) = M*(0), we haveM*(0)G(0)" ' M©0)" = MO)MO)"'M©0)""'M@0)" = I, and so
M*()G(t)"'M@)" = I for allt € [0,b]. It follows that M*(r) = M(¢) for all t € [0,b], and so

a*'(t) —a'(t) = Ofor all t as well. Sincex*(0) = «(0), it follows thate™(r) = «(¢) for all ¢ € [0, 5], as
we wished to establish.

EXERCISES 2.3

1. Calculate the Christoffel symbols for a coméy, v) = (u cosv, u Sinv, u), both directly and by using
the formulas f).

2. Calculate the Christoffel symbols for the following parametrized surfaces. Then check in each case that
the Codazzi equations and the first Gauss equation hold.
a. the plane, parametrized by polar coordinaigs: v) = (u cosv, u sinv, 0)
b. ahelicoid:x(u,v) = (u cosv, u sinv, v)
#c. aconex(u,v) = (ucosv,usinv,cu), ¢ # 0
#*d. asurface of revolutionx(u, v) = (f(u) cosv, f(u) sinv, g(u)), with £'(u)? + g’'(w)? = 1

3. Use the first Gauss equation to derive the forms)agiven on p. 60 for Gaussian curvature.
4. Check the Gaussian curvature of the sphere using the forrautan (. 60.

5. Check that for a parametrized surface with= G = A(u,v) and F = 0, the Gaussian curvature is

: I, 5 P2f  0%f . .
given byK = ——V~-(Ind). (HereV~ f = — + — is the Laplacian off.)
21 uz v

6. Prove there is noompactminimal surfaceM C R3.



§3. THE CODAZZI AND GAUSSEQUATIONS AND THE FUNDAMENTAL THEOREM OF SURFACE THEORY 65

7.

10.

11.

12.

13.

14.

15.

Decide whether there is a parametrized surfdaev) with
a. E=G6=1,F=04{=1=-n,m=0
b. E=G=1,F=0{=e¢*=n,m=0
c. E=1,F=0,G=cofu,{=cofu,m=0,n=1

a. Maodify the proof of Theorem 3.6 to prove that a smooth, compact surfac&witld) and constant
mean curvature is a sphere.

b. Give an example to show that the result of Lemma 3.7 fails if we asgyrhas a local minimum
andk, has a local maximum ag.

Give examples of (locallyjon-congruenparametrized surfacesandx™ with
a. I=1*
b. Il = II* (Hint: Try reparametrizing some of our simplest surfaces.)

Letx(u,v) = a(u) + vB(u) be a parametrization of a ruled surface. Prove that the tangent plane
is constant along rulings (i.e., the surface is flat) if and onlg’ifu), B(«), and B’(u) are linearly
dependent for every. (Hint: When isSp (x,) = 0? Alternatively, considex, x x,, and apply Exercise
A2.1)

Prove thatx is a line of curvature inV if and only if the ruled surface formed by the surface normals
alonge is flat. (Hint: See Exercise 10.)

Show that the Gaussian curvature of the parametrized surfaces

X(u,v) = (u cosv,u sinv, v)

y(u,v) = (ucosv,usinv, Inu)

is the same for eackwu, v), and yet the first fundamental formg and |, do not agree. (Thus, the
converse of Corollary 3.2 is false.)

Suppose that through each point of a surfécéhere is a planar asymptotic curve with nonzero curva-
ture. Prove that/ must be a (subset of a) plane. (Hint: Apply Proposition 3.4.)

Suppose that the surfag£ is doubly ruled by orthogonal lines (i.e., through each pointothere pass
two orthogonal lines).

a. Using the Gauss equations, prove tkat 0.

b. Now deduce tha¥ must be a plane.

(Hint: As usual, assume that, locally, the families of linesiarandv-curves.)

Supposé/ is a surface with no umbilic points and one constant principal curvatugg 0. Prove that

M is (a subset of) a tube of radius= 1/|k;| about a curve. That is, there is a cuweso thatM is

(a subset of) the union of circles of radiugn each normal plane, centered along the curve. (Hints: As
usual, work with a parametrization where theurves are lines of curvature with principal curvature
k1 and thev-curves are lines of curvature with principal curvatise Use Lemma 3.3 to show that the
u-curves have curvaturé;| and are planar. Then defieappropriately and check that it is a regular
curve.)
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16. Consider the parametrized surfaces
X(u, v) = (—coshu sinv, coshu cosv, u) (a catenoid)
y(u,v) = (u cosv,u sinv, v) (a helicoid).

a. Compute the first and second fundamental forms of both surfaces, and check that both surfaces are
minimal.
Find the asymptotic curves on both surfaces.

c. Show that we can locally reparametrize the helicoid in such a way as to make the first fundamental
forms of the two surfaces agree; this means that the two surfaces are locally isometric. (Hint: See
p. 39. Replace with sinhu in the parametrization of the helicoid. Why is this legitimate?)

d. Why are they not globally isometric?

e. (for the student who's seen a bit of complex variables) As a hint to what's going on here, let
z = u+ivandZ = x + iy, and check that, continuing to use the substitution from part c,
Z = (siniz,cosiz, z). Understand now how one can obtain a one-parameter family of isometric
surfaces interpolating between the helicoid and the catenoid.

17. Find all the surfaces of revolution of constant curvature

a K=0
bh. K=1
c. K=-1

(Hint: There are more than you might suspect. But your answers will involve integrals you cannot
express in terms of elementary functions.)

4. Covariant Differentiation, Parallel Translation, and Geodesics

Now we turn to the “intrinsic” geometry of a surface, i.e., the geometry that can be observed by an
inhabitant (for example, a very thin ant) of the surface, who can only perceive what happens along (or, say,
tangential to) the surface. Anyone who has studied Euclidean geometry knows how important the notion of
parallelismis (and classical non-Euclidean geometry arises when one removes Euclid’'s parallel postulate,
which stipulates that given any linke in the plane and any poin® not lying on L, there is a unique line
through P parallel toL). It seems quite intuitive to say that, working just®d, two vectorsV (thought of
as being “tangent ak”) and W (thought of as being “tangent ét”) are parallel provided that we obtaiif
when we mové/ “parallel to itself” from P to Q; in other words, iW = V. But what would an inhabitant
of the sphere say? How should he compare a tangent vector at one point of the sphere to a tangent vector
at another and determine if they're “parallel™? (See Figure 4.1.) Perhaps a better question is this: Given
a curvea on the surface and a vector fiexd defined alongx, should we say is parallel if it has zero
derivative alonge?

We already know how an inhabitant differentiates a scalar funcfiod — R, by considering the
directional derivativeDy f for any tangent vectov € Tp M. We now begin with a

Definition. We say a functiorX: M — R3 is avector fieldon M if
(1) X(P) € Tp M foreveryP € M, and
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Are V and W parallel?

FIGUREA4.1

(2) for any parametrizatior: U — M, the functionXex: U — R3 is (continuously) differentiable.

Now, we can differentiate a vector fieklon M in the customary fashion: ¥ € Tp M, we choose a
curvea with «(0) = P anda’(0) = V and setDyX = (Xea)’(0). (As usual, the chain rule tells us this is
well-defined.) But the inhabitant of the surface can only see that portion of this vector lying in the tangent
plane. This brings us to the

Definition. Given a vector fiel& andV € Tp M, we define theovariant derivative
VX = (DyX)l = the projection ofDyX ontoTp M = DyX — (DyX - n)n.

Given a curvex in M, we say the vector fielX is covariant constanbr parallel alonge if V()X = 0
for all . (This means thaD ;)X = (Xea)'(¢) is a multiple of the normal vectar(a(z)).)

Example 1. Let M be a sphere and let be a great circle inM. The derivative of the unit tangent
vector ofa points towards the center of the circle, which is in this case the center of the sphere, and thus is
completely normal to the sphere. Therefore, the unit tangent vector fiedldsoparallel alongx. Observe
that the constant vector fiel@, 0, 1) is parallel along the equatar = 0 of a sphere centered at the origin.

Is this true of any other constant vector field?v

Example 2. A fundamental example requires that we revisit the Christoffel symbols. Given a parametrized
surfacex: U — M, we have

Vi, Xu = (qu)” = F,;;Xu + Fulilxv
Vi Xu = (Xuo)! = T2 %, + T2 Xy = Vy, Xy, and
Vi, Xo = Koo) = T X + T 2%y, ¥

The first result we prove is the following

Proposition 4.1. Given a curvex:[0,1] — M with «(0) = P andXy € TpM, there is a unique
parallel vector fieldK defined along: with X(P) = Xo.
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Proof. Assuminge lies in a parametrized portior: U — M, seta(r) = x(u(z),v(t)) and write
X(ee(t)) = at)xy (u(t),v(t)) + b(t)%y(u(t),v(t)). Thena'(t) = v'(t)x, + v'(¢)X, (Where the the cum-
bersome argumertt:(z), v(¢)) is understood). So, by the product rule and chain rule, we have

VariX = (e 0)! = (G000 + b0, 000, v(z))))”
d
dt
= a' ()% + b (X0 + a(t) (! (X + 0" (%) + D@ (U ()Xo + V' ()Xp)
= a' (X + b'(O)%y + a(0) (u' () (T Xu + T %) + 0" (L X + T %))

+ b (1) (' (1) (T Xu + TXy) + 0 (@) (TyeXu + TyiXo))
= (a'(1) + a@)(T140 (1) + T2 0" (1)) + b(O) (T2 (1) + T4 (1)),

+ (B (0) + a() (T2 (1) + T2 0" (1)) + b()(T 2 () + T L0 (1)))%y .-

I I
— (% + D (%0 + alt) ( o (11(0). v(r))) b(0) (%x W), v(r)))

Thus, to sayX is parallel along the curve is to say that(¢) andb(¢) are solutions of the linear system of

first order differential equations
@) a'(t) + a(®)(Thu' (1) + L0 (0) + b(O)(Tyu' (1) + Tyyv' (1)) = 0
b'(t) + a(t)(Typu' (1) + L") + b(0)(Dyu' (1) + Ty v' (1)) = 0.

By Theorem 3.2 of the Appendix, this system has a unique solutigh, ahonce we specify: (0) andb (0),
and hence we obtain a unique parallel vector fieldith X(P) = Xo. O

Definition. If O = a(1), we refer toX(Q) as theparallel translateof X, alonge, or the result of
parallel translationalonge.

Remark. The system of differential equationd) that defines parallel translation shows that it is “in-
trinsic,” i.e., depends only on the first fundamental form\éf despite our original extrinsic definition. In
particular, parallel translation in locally isometric surfaces will be identical.

Example 3. Fix a latitude circleu = ug (uo # 0, ) on the unit sphere and let’s calculate the effect
of parallel-translating the vectof, = x, starting at the point? given byu = uo, v = 0, once around
the circle, counterclockwise. We parametrize the curvee@y = ug, v(t) = ¢, 0 <t < 2m. Using our
computation of the Christoffel symbols of the sphere in Example 1 or 2 of Section 3, we obtaingjom (
the differential equations

a’(t) = sinug cosugh(t), a(0) =0
b'(t) = — cotupal(t), b(0) = 1.
We solve this system by differentiating the second equation again and substituting the first:
b"(t) = —cotuga’(t) = —co uph(1), b(0) = 1.

Recalling that every solution of the differential equatipfi(r) + k?y(t) = 0 is of the formy(r) =
c1cogkt) + cpsin(kt), c1, c2 € R, we see that the solution is

a(t) = sinug sin((cosug)z), b(r) = cos((cosuo)t).
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Note that||X (ex(¢))||> = Ea(t)® +2Fa(t)b(t) + Gb(t)* = sir® u, for all . That is, the original vectoX
rotates as we parallel translate it around the latitude circle, and its length is preserved. As we see in Figure
4.2, the vector rotates clockwise as we proceed around the latitude circle (in the upper hemisphere). But this

FIGURE4.2

makes sense: If we just take the covariant derivative of the tangent vector to the circle, it points upwards
(cf. Figure 3.1), so the vector field must rotate clockwise to counteract that effect in order to remain parallel.
Sinceb(2mr) = cog2m coSug), we see that the vector turns through an angle®t cosuy.  V

Example 4(Foucault pendulum) Foucault observed in 1851 that the swing plane of a pendulum located
on the latitude circle: = u( precesses with a period @f = 24/ cosugy hours. We can use the result of
Example 3 to explain this. We imagine the earth as fixed and “transport” the swinging pendulum once around
the circle in24 hours. If we make the pendulum very long and the swing rather short, the motion will be
“essentially” tangential to the surface of the earth. If we move slowly around the circle, the forces will be
“essentially” normal to the sphere: In particular, lettiRgdenote the radius of the earth (approximately
3960 mi), the tangential component of the centripetal acceleration is (cf. Figure 3.1)

27 \? - 272R

R sin cos —
(Rsinuo) ”0(24) = g2

Thus, the “swing vector field” is, for all practical purposes, parallel along the curve. Therefore, it turns
2w

~ 135.7 mi/hr? ~ 0.0553 ft/sec ~ 0.17%g.

through an angle ats cosug in one trip around the circle, so it takes hours to

(27 cosug) /24 - COSug

return to its original swing plane. V
Our experience in Example 3 suggests the following

Proposition 4.2. Parallel translation preserves lengths and angles. ThakisndY are parallel vector
fields along a curva from P to Q, then||X(P)| = |IX(Q)| and the angle betweefi P) andY (P) equals
the angle betweeX(Q) andY (Q).

Proof. Considerf(z) = X(a(?)) - Y(a(z)). Then
@) = Kea)'(t) - (Yoa)(t) + (Xoa)(t) - (Yoa)' (1)
2)

0
= DX+ Y + X DoryY L V)XY + X VoY 2.



70 CHAPTER2. SURFACES LOCAL THEORY

Note that equality (1) holds becauseandY are tangent td4 and hence their dot product with any vector
normal to the surface & Equality (2) holds becaus¢ andY are assumed parallel along It follows that
the dot producK - Y remains constant alorng. TakingY = X, we infer that||X| (and similarly|Y|) is
constant. Knowing that, using the famous formula&aes X - Y /| X]||Y| for the angled betweenX and
Y, we infer that the angle remains constanil

Now we change gears somewhat. We saw in Exercise 1.1.8 that the shortest path joining two points
in R3 is a line segment. One characterization of the line segment is that it never changes direction, so that
its unit tangent vector is parallel (so no distance is wasted by turning). It seems plausible that the mythical
inhabitant of our surfaca/ might try to travel from one point to another M, staying inM, by similarly
not turning; that is, so that his unit tangent vector field is parallel along his path. Physically, this means
that if he travels at constant speed, any acceleration should be normal to the surface. This leads us to the
following

Definition. We say a parametrized cureein a surfaceM is ageodesidf its tangent vector is parallel
along the curve, i.e., Vya' = 0.

Recall that since parallel translation preserves lengthsiust have constant speed, although it may not
be arclength-parametrized. In general, we refer to an unparametrized curve as a geodesic if its arclength
parametrization is in fact a geodesic.
In general, given any arclength-parametrized cwMging on M, we defined its normal curvature at
the end of Section 2. Instead of using the Frenet frame, it is natural to consideatheux framefor o,
which takes into account the fact thatlies on the surfacd/. (Both are illustrated in Figure 4.3.) We take

TheFrene and Darboux frame:

FIGURE4.3

the right-handed orthonormal bagig, n x T, n}; note that the first two vectors give a basis fgrM. We
can decompose the curvature vector

kN=(kN-(nxT))(nxT)+ (K‘NK’.'Q)”.
Kg n
As we saw beforek, gives thenormal component of the curvature vectar gives thetangentialcom-
ponent of the curvature vector and is called ¢lg®@desic curvatuteThis terminology arises from the fact
thate is a geodesic if and only if its geodesic curvature vanishes. (When0, the principal normal is
not defined, and we really should wrig€ in the place ofcN. If the acceleration vanishes at a point, then
certainly its normal and tangential components are Bdth

Example 5. We saw in Example 1 that every great circle on a sphere is a geodesic. Are there others?
Leta be a geodesic on a sphere centered at the origin. 8inee0, the acceleration vectar” (s) must be
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a multiple ofec(s) for everys, and sox” x & = 0. Thereforea’ x & = A is a constant vector, splies in
the plane passing through the origin with normal ve&oiT hat is,« is a great circle. V

Using the equations¥), let's now give the equations for the cure€&) = x(u(z), v(z)) to be a geodesic.
SinceX = /(1) = u' ()X, + v'(t)Xy, we haveu(t) = u'(z) andb(t) = v/(¢), and the resulting equations
are

w”(t) + T2 ()% + 205/ (' (1) + T2V ()2 =0

(‘*) " V2 v,/ / v, 0\2
vi(t) + Iu ()" + 20, ,u ()v' () + Tyv'()” =0.

The following result is a consequence of basic results on differential equations (see Theorem 3.1 of the
Appendix).

Proposition 4.3. Given a pointP € M andV € Tp M,V # 0, there exist > 0 and auniquegeodesic
a:(—¢,&) > M witha(0) = P ande’(0) = V.

Example 6. We now use the equationdd) to solve for geodesics analytically in a few examples.

(a) Letx(u,v) = (u,v) be the obvious parametrization of the plane. Then all the Christoffel symbols
vanish and the geodesics are the solutions of

u’'(t) =v"@) =0,

so we get the linea(r) = (u(t),v(¢)) = (a1t + b1,axt + by), as expected. Note thatdoes in
fact have constant speed.

(b) Using the standard spherical coordinate parametrization of the sphere, we obtain (see Example 1 or
2 of Section 3) the equations

(%) u(t) — sinu(t) cosu(t)v'(t)? = 0 = v (¢) + 2 cotu(t)u’ (t)v'(¢).

Well, one obvious set of solutions is to takér) = ¢, v(tr) = vo (and these, indeed, give the
great circles through the north pole). Integrating the second equatiar) img( obtain Inv’(r) =

—2Insinu(¢) + const, so
C

YO = S7e0

for some constant. Substituting this in the first equation ir)(we find that

cZcosu(t)
sin’ u(z)

u//(t)

El

multiplying both sides by/(¢) (the “energy trick” from physics) and integrating, we get

/ 2 _ 2 C2 / _ 2 62
u@)y =C S’ and so u(z)_ﬂ:JC S ()

for some constant’. Switching to Leibniz notation for obvious reasons, we obtain

dv V(1) ccsCu . . .
— = = ; thus, separating variables gives
du  u'(t) C2 —c2¢csCu

c cs@ udu ccs udu
dv == ==+

VCZT—Zces@u J(CZ=c2) = c2colu
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Now we make the substitutioncotu = +/C2 — ¢2 sin w; then we have
c cs udu
dv=+= = Fdw,
V(C2 —c2) —c2cot2u
and so, at long last, we hawe = +v + a for some constant. Thus,

ccotu = vVC2—c2snw =+vC?%2—c2sn(+v +a) = vC2 — c2(sina cosv + cosa Sinv),

and so, finally, we have the equation

ccosu + vVC2 —c2sinu(Acosv + Bsinv) =0,

which we should recognize as the equation of a great circle! (Here’s a hint: This curve lies on the
planev'C? — ¢2(Ax + By) + ¢z = 0.) \Y

We can now give a beautiful geometric description of the geodesics on a surface of revolution.
Proposition 4.4(Clairaut’s relation) The geodesics on a surface of revolution satisfy the equation
(<) r COS¢p = const

wherer is the distance from the axis of revolution afids the angle between the geodesic and the parallel.
Conversely, any (constant speed) curve satisfifrigthat isnot a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in Example 9 of Section 2, wethave, F = 0,
G=fw?*T2=Tp2 =fw/fu), % =—f(u)/f'(u),and all other Christoffel symbols abe(see
Exercise 2.3.2d.). Then the syste#&) of differential equations becomes

(1) u’ — ff' W) =0
() v %uv —o.
Rewriting the equationff) and integrating, we obtain

V') _2f @)’ (@)

V(1) S ()

Inv'(r) = —2In f(u(z)) + const
V(D) =
fu())?

so0 along a geodesic the quantif(x)?v’ = Gv’ is constant. We recognize this as the dot product of the
tangent vector of our geodesic with the vectgr and so we infer thax, || cos¢ = r cos¢ is constant.
(Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equatity) (s equivalent to the conditioncos¢ = const, provided
we assumdle’||? = u’? + Gv'? is constant as well. But if

u'(1)? + Gv'(0)? = u'(1)? + f(u(t))*v'(t)? = const
we differentiate and obtain

u' (O (1) + @) (O" () + fu@®) f @) v’ )? = 0;
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substituting for” (¢) using ), we find

W () (" (1) = f @) f @O (0)?) =0.

In other words,provided u’(t) # 0, a constant-speed curve satisfying ) satisfies ;) as well. (See
Exercise 6 for the case of the parallels

Remark. We can give a simple physical interpretation of Clairaut’s relation. Imagine a particle with
massl constrained to move along a surface. If no external forces are acting, then the particle moves along
a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case
of our surface of revolution, the vertical component of the angular momehtumea x «’ is—surprise,
surprisel—f 2v’, which we've shown is constant. Perhaps some forces normal to the surface are required
to keep the patrticle on the surface; then the particle still moves along a geodesic (why?). Moreover, since
(e x n)-(0,0,1) = 0, the resulting torquestill have no vertical component.

Returning to our original motivation for geodesics, we now prove the following
Theorem 4.5. Geodesics anecally distance-minimizing.

Proof. ChooseP € M arbitrary and a geodesje through P. Start by drawing a curv€y through P
orthogonal toy. We now choose a parametrizatigtu, v) so thatx(0,0) = P, theu-curves are geodesics

FIGURE4.4

orthogonal taCy, and thev-curves are the orthogonal trajectories of iheurves. (It follows from Theorem
3.3 of the Appendix that we can do this on some neighborhoa8l.piWe wish to show that for any point
0 = X(ug,0) ony, any path fromP to Q is at least as long as the length of the geodesic segment.

In this parametrization we havé = 0 andE = E(u) (see Exercise 13). Now, éi(z) = x(u(¢), v(t)),
a <t < b, is any path fromP = x(0,0) to O = X(ug, 0), we have

b b
length(er) = / VE@OW 1) + Gu(t). v(e)v' (0)?d1 = / JE@O) (0)|dt
> / " JEGadu,
0

which is the length of the geodesic grdrom P to 0. O
(Cf. Exercise 1.3.1.)

Example 7. Why is Theorem 4.5 a local statement? Well, consider a great circle on a sphere, as shown
in Figure 4.5. If we go more than halfway around, we obviously have not taken the shortest path.
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short

FIGUREA4.5

Remark. It turns out that any surface can be endowed withedric (or distance measujdy defining
the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise-
@! paths joining them. (Although the distance measure is different from the Euclidean distance as the
surface sits ifR3, the topology—notion of “neighborhood”—induced by this metric structure is the induced
topology that the surface inherits as a subspad’of It is a consequence of the Hopf-Rinow Theorem (see
M. doCarmo,Differential Geometry of Curves and Surfac@&sentice Hall, 1976, p. 333, or M. Spivak,
Comprehensive Introduction to Differential Geomethyrd edition, volume 1, Publish or Perish, Inc., 1999,
p. 342) that in a surface in which every parametrized geodesic is defined for all time (a “complete” surface),
every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing:
To find the shortest path from® to O, one walks around the “geodesic circle” of points a small distance
from P and finds the poink on it closest toQ; one then proves that the unique geodesic emanating from
P that passes througR must eventually pass through, and there can be no shorter path.

We referred earlier to two surfacd$ andM * as being globally isometric (e.g., in Example 6 in Section
1). We can now give the official definition: There should be a funciiod — M * that establishes a one-
to-one correspondence and preserves distance—foPa@y € M, the distance betweeR and Q in M
should be equal to the distance betwegdP) and f(Q) in M*.

EXERCISES 2.4

1. Determine the result of parallel translating the ve¢®®, 1) once around the circle? + y? = a2,
z = 0, on the right circular cylindex? + y? = a2.

2. Provethak? = k7 + k7.

3. Supposex is a non-arclength-parametrized curve. Using the formulg on p. 14, prove that the
velocity vector of is parallel alongy if and only ifkg = 0 andv’ = 0.

*4. Find the geodesic curvatukg of a latitude circlex = uo on the unit sphere

a. directly
b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex angdeparametrized by

X(u,v) = (utang cosv,utang sinv,u), 0<u <ug, 0 <v <2m.
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*9.
10.

11.

12.

#13.

14.

15.

Find the geodesic curvatukg of the circleu = uo by using trigonometric considerations. Check that
your answer agrees with the curvature of the circle you get by unrolling the cone to form a “pacman”
figure, as shown in Figure 4.6. (For a proof that these curvatures should agree, see Exercise 3.1.7.)

FIGURE4.6

Check that the parallel = u( is a geodesic on the surface of revolution parametrized as in Proposition
4.4 if and only if f/(ug) = 0. Give a geometric interpretation of and explanation for this result.

Use the equationsh] to determine through what angle a vector turns when it is parallel-translated once
around the circle: = uo on the con&(u, v) = (u cosv, u sinv, cu), ¢ # 0. (See Exercise 2.3.2c.)

a. Prove that if the surfacdg and M * are tangent along the cur¢g, parallel translation along is
the same in both surfaces.

b. Use the result of part a to determine the effect of parallel translation around the latitude circle
u = ug on the unit sphere, using only geometry, trigonometry, and Figure 4.6. (Note the Remark
on p. 68.)

What curves lying on a sphere have constant geodesic curvature?

Use the equationskéh) to find the geodesics on parametrized surfeg@e v) = (e¥ cosv, e¥ sinv, 0).
(Hint: Aim for dv/du. Use the second equation &) and the fact that geodesics must have constant
speed.)

Use the equationskg) to find the geodesics on the plane parametrized by polar coordinates. (Hint:
Examine Example 6(b).)

Prove or give a counterexample:
a. A curve is both an asymptotic curve and a geodesic if and only if it is a line.
b. Ifacurve is both a geodesic and a line of curvature, then it must be planar.

a. Supposé# = 0 and theu-curves are geodesics. Use the equatide)(to prove thatE is a
function ofu only.
b. Supposd& = 0 and theu- andv-curves are geodesics. Prove that the surface is flat.

Supposd’ = 0 and theu-curves are geodesics. Prove that the length ofitbarve fromu = ug to
u = uy is independent of. (See Figure 4.7.)

a. Prove that an arclength-parametrized cores a surfaceVl with « # 0 is a geodesic if and only
if n = +N.
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FIGUREA4.7

b. Leta be a space curve, and I8t be the ruled surface generated by its binormals. Prove that the
curve is a geodesic oM .

16. a. Suppose a geodesic is planar and«has 0 at P. Prove that its tangent vector & must be a

principal direction. (Hint: Use Exercise 15.)
b. Prove that if every geodesic of a (connected) surface is planar, then the surface is contained in a

plane or a sphere.

17. Show that the geodesic curvaturePanf a curveC in M is equal (in absolute value) to the curvature at
P of the projection ofC into Tp M .

*18. Use Clairaut’s relation, Proposition 4.4, to analyze the geodesics on each of the surfaces pictured in
Figure 4.8. In particular, other than the meridians, in each case which geodesics are unbounded (i.e., go

off to infinity)?

A
A
Y

FIGURE4.8

19. Check using Clairaut’s relation, Proposition 4.4, that great circles are geodesics on a sphere. (Hint: The
result of Exercise A.1.3 may be useful.)

20. LetM be asurface an® € M. We sayU,V € Tp M areconjugateif Il p(U,V) = 0.

a. LetC C M be a curve. Define thenvelopeM * of the tangent planes tdf along C to be the
ruled surface whose generatorfate C is the limiting position ag) — P of the intersection line
of the tangent planes t&f at P and Q. Prove that the generator &tis conjugate to the tangent
linetoC at P.

b. Prove thatiiC is nowhere tangent to an asymptotic direction, théhiis smooth (at least neér).
Prove, moreover, that/ * is tangent taVf alongC and is a developable (flat ruled) surface.

c. Apply part b to give a geometric way of computing parallel translation. In particular, do this for a
latitude circle on the sphere. (Cf. Exercise 8.)
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21.

22.

23.

*24.

25.

26.

27.

28.

Suppose that on a surfakethe parallel translation of a vector from one point to another is independent
of the path chosen. Prove th& must be flat. (Hint: Fix an orthonormal bas#, € for 7p M and
define vector field®;, e, by parallel translating. Choose coordinates so thattoerves are always
tangent toe; and thev-curves are always tangentdg. See Exercise 13.)

Use the Clairaut relation, Proposition 4.4, to describe the geodesics on the torus as parametrized in
Example 1(c) of Section 1. (Start with a geodesic starting at and making apghath the outer
parallel. Your description should distinguish between the casesosgy < 42 and cospy > 4=2.
Which geodesics never cross the outer parallel at all? Also, remember that through each point there is a

uniquegeodesic in each direction.)

Use the proof of the Clairaut relation, Proposition 4.4, to show that a unit-speed geodesic on a surface
of revolution is given in terms of the standard parametrization in Example 9 of Section 2 by

+ const

du
v=c /
SV fu)? —c?
Now deduce that in the case of a non-arclength parametrization we obtain
o [T+ g )
f)v fu)? —c?

Use Exercise 23 to give equations of the geodesics on the pseudosphere (see Example 8 of Section 2).
Deduce, in particular, that the only geodesics that are unbounded are the meridians.

du + const

Use Exercise 23 to show that any geodesic on the parahboleid x> + y? that is not a meridian
intersects every meridian. (Hint: Show that it cannot approach a meridian asymptotically.)

LetM be the hyperboloid? + y? — z2 = 1, and letC be the circlex? + y2 =1,z = 0.

a. Use Clairaut’s relation, Proposition 4.4, to show that, with the exception of the €ircivery
geodesic onV is unbounded.

b. Show that there are geodesics that approach the €irelgymptotically. (Hint: Use Exercise 23.)

LetC be a parallel (withy = ug) in a surface of revolutiorM . Suppose a geodesjcapproache€”

asymptotically.

a. Use Clairaut’s relation, Proposition 4.4, to show thanust approach “from above” (i.e., with
r>ro = f(uo)).

b. Use Exercise 23 to show th&@t must itself be a geodesic. (Hint: Consider the Taylor expansion
Fu) = f(uo) + f'(uo)(u —uo) + 5 /" (uo)(u —ug)> +....)

c. Give an alternative argument for the result of part b by using the fact that the metric discussed in
the Remark on p. 74 is a continuous function of the pair of points. You will also need to use the
fact that when points are sufficiently close, there is a unique shortest geodesic joining them.

Consider the surface= f(u,v). A curvea whose tangent vector at each poiit= (u, v, f(u,v))

projects to a scalar multiple &f f(u, v) is a curve of steepest ascent (why?). Suppose such aeurve

is also a geodesic.

a. Prove that the projection af into theuv-plane is, suitably reparametrized, a geodesic indthe
plane. (Hint: What is the projection af’?)
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Deduce tha& is also a line of curvature. (Hint: See Exercise 16 whds not a line. The case of
a line can be deduced from the computation in part c.)
Show that if all the curves of steepest ascent are geodesicsf thatisfies the partial differential
equation

Jufo(fov — fuu) + fuv(fu2 - fvz) = 0.
(Hint: When are the integral curves ¥ff lines?)
Show that if all the curves of steepest ascent are geodesics, the level cupveseoparallel (see
Exercise 1.2.24). (Hint: Show th#¥v f'|| is constant along level curves.)

Give a characterization of the surfaces with the property that all curves of steepest ascent are

geodesics.



CHAPTER 3

Surfaces: Further Topics

The first section is required reading, but the remaining sections of this chapter are independent of one
another.

1. Holonomy and the Gauss-Bonnet Theorem

Let's now pursue the discussion of parallel translation that we began in Chapter 2{ heta surface
anda a closed curve in/. We begin by fixing a smoothly-varying orthonormal basjse, (a so-called
framing) for the tangent planes @i in an open set oM containinge, as shown in Figure 1.1 below. Now

FIGURE1.1

we make the following

Definition. Leta be aclosedcurve in a surfac@f. The angle through which a vector tunedative to
the given framingis we parallel translate it once around the cus called theholonomy arounde.

For example, if we take a framing arouady using the unit tangent vectorsdaas our vectorgy, then, by
the definition of a geodesic, there there will be zero holonomy around a closed geodesic (why?). For another
example, if we use the framing on (most of) the sphere given by the tangents to the lines of longitude and
lines of latitude, the computation in Example 3 of Section 4 of Chapter 2 shows that the holonomy around a
latitude circleu = ug of the unit sphere is-27 cosuy.

To make this more precise, for ease of understanding, let's work in an orthogonal parametriaation

define a framing by setting
Xy Xy

vE VG’
Since (much as in the case of curves)ande, give an orthonormal basis for the tangent space of our
surface at each point, all the intrinsic curvature information (such as given by the Christoffel symbols)

e =

and & =

Lfrom holo-+-nomy the study of the whole

2As usual, away from umbilic points, we can apply Theorem 3.3 of the Appendix to obtain a parametrization whesnthe
v-curves are lines of curvature.

79
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is encapsulated in knowing hoey twists towardse, as we move around the surface. In particular, if
a(t) = X(u(),v(t)),a <t < b,is a parametrized curve, we can set

d
$12(1) = E(el(u(l),v(t))) € (u(1). v()),

which we may write more casually &(7) - ex(¢), with the understanding that everything must be done in
terms of the parametrization. We emphasize fhatdepends in an essential way on fegametrizeccurve
a. Perhaps it’s better, then, to write

$12 = Vo€l - €.
Note, moreover, that the proof of Proposition 4.2 of Chapter 2 show¥thei-e;, = —¢1, andVye;-e; =
Vw € - € = 0. (Why?)

Remark. Although the notation seems cumbersome, it reminds uspthais measuring hove; twists
towardse, as we move along the curee This notation will fit in a more general context in Section 3.

Let's now derive an explicit formula for the functiah ,.

Proposition 1.1. In an orthogonal parametrization with = x,,/vE ande, = x,/~/G, we have

1
h12 = 2m(—Evu/ + Gyuv').

Proof. The key point is to take full advantage of the orthogonalitx,pfindx,,.

b1z = d [ Xu Xo

12 = 75) TG
1

= (quu/ + Xuvv/) * Xy

VEG

(since the term that would arise from differentiatik@e will involve x, - x, = 0)

= (T Xu 4+ Tyhx)u” + (Tyfe X + LX) V') - Xy

-4

= — ([ + o) = —Eyu’ + Gyv'),

;(
2VEG

5

by the formulas ) on p. 58. O

Suppose now that is aclosedcurve and we are interested in the holonomy arotndf e; happens
to be parallel along, then the holonomy will, of course, lie If not, let’'s consideiX(¢) to be the parallel
translation ofe; alonge (r) and writeX(t) = cosyr(¢)e; + siny (¢)e;, takingy (0) = 0. ThenX is parallel
alonge if and only if

0= Vg X = Vy(cosye, + sinyrey)
= COSY Vg€ + SiNy Vg & + (—sinye; + cosye)y’
= COSYP12€ — SiNYgi2€; + (—sinye + cosyrer)y’
= (¢12 + ¥')(=sinye + cosye,).

Thus, X is parallel alongx if and only if y/(1) = —¢12 (7). We therefore conclude:
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b
Proposition 1.2. The holonomy around the closed cuweequalsAyr = — / d12(t)dt.
a

Remark. Note that the angles is measured frone; in the direction ofe,. Whether the vector turns
counterclockwise or clockwise from our external viewpoint depends on the orientation of the framing.

Example 1. Back to our example of the latitude cirde= u( on the unit sphere. Thesy = x,, and
e = (1/sinu)x,. If we parametrize the curve by taking= ¢, 0 < ¢ < 2x, then we have (see Example 1
of Chapter 2, Section 3)

V€ = VgXy = (Xup)! = cotugx, = cosugpe,,

and so¢1, = cosug. Therefore, the holonomy around the latitude circle (oriented counterclockwise) is
2

Ay = — cosugdt = —2m coSug, confirming our previous results.

Note t(r)1at if we wish to parametrize the curve by arclength (as will be important shortly), we take
s = (sinug)v, 0 < s < 27 sinug. Then, with respect to this parametrization, we hayg(s) = cotuy.
(Why?)

For completeness, we can use Proposition 1.1 to calcgigteas well: WithE = 1, G = sinfu,

u = uy, andU(S) = S/ sinug, we haVlez =

. 1
- 2Sinug CoSug « — = cotug, as before. V
2s8iNug Sinug

Suppose now that is an arclength-parametrized curve and let’s waife) = x(u(s), v(s)) andT (s) =
a'(s) = cosh(s)e; +sinf(s)es, s € [0, L], for a@! functioné(s) (cf. Lemma 3.6 of Chapter 1), as indicated
in Figure 1.2. A formula fundamental for the rest of our work is the following:

FIGURE1.2

Proposition 1.3. Whene is an arclength-parametrized curve, the geodesic curvatwesagiven by

Kg(s) = Pr12(s) + 0'(s) =

2\/1E_G(_Evu,(S) + GuV'(s)) + 0'(s).
Proof. Recall thatcg = kN-(nx T) = T’ - (n x T). Now, sinceT = cosfe; + sinfe,, N x T =
—sinfe; + cosfe, (why?), and so
kg = V1T - (—sinfe; + cosbe,)
= Vr(cosfe; + sinfey) - (—sinfe; + cosbey)
= (cosfVre; + sinfVrey) - (—sinbe; + cosfey) + ((—sind)’(—sind) + (cosd)b’(cosh))
= (COS 6 + Si? 0) (12 + 0') = ¢12 + 6,

as required. Now the result follows by applying Proposition 1.1 whéharclength-parametrized.[d
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Remark. The first equality in Proposition 1.3 should not be surprising in the least. Curvature of a
plane curve measures the rate at which its unit tangent vector turns relative to a fixed reference direction.
Similarly, the geodesic curvature of a curve in a surface measures the rate at which its unit tangent vector
turns relative to a parallel vector field along the curfemeasures its turning relative &, which is itself
turning at a rate given by,, so the geodesic curvature is the sum of those two rates.

Now suppose that is aclosedcurve bounding a regioR C M. We denote the boundary & by dR.
Then by Green’s Theorem (see Theorem 2.6 of the Appendix), we have

L L 1 ) . 1
/0 P12(s)ds = /0 2\/ﬁ(—Evu (s) + Gyv (s))ds = /BR 2\/ﬁ(—Evdu + Gudv)

//( Nﬁ (ng_G) )dudv
) )Jﬁdudu

(t)

://Rzﬁ( M)+(W

—/ KdA
R

by the formula ) for Gaussian curvature on p. 60. (Recall from the end of Section 1 of Chapter 2 that the
element of surface area on a parametrized surface is givéd by || x, x Xy ||dudv = VEG — F2dudv.)
We now see that Gaussian curvature and holonomy are intimately related:

Corollary 1.4. WhenR is a region with smooth boundary lying in an orthogonal parametrization, the
holonomy aroundR is Ay = [[ KdA.

Proof. This follows immediately from Proposition 1.2 and the formuipgbove. O

We conclude further from Proposition 1.3 that

/ Kgds = / ¢12d§ + H(L) - 9(0),

aR aR —_—
A

so the total angle through which the tangent vectatRdurns is given by

A9:/ Kgds+/ KdA.
OR R

Now, whenR is simply connected (i.e., can be continuously deformed to a point), it is not too surprising
that A@ = 2x. Intuitively, as we shrink the curve to a poim, becomes almost constant along the curve,

but the tangent vector must make one full rotation (as a consequence of the Hopf Umlaufsatz, Theorem 3.5
of Chapter 1). Sincé\d is an integral multiple o2z that varies continuously as we deform the curve, it
must stay equal t@sr throughout.

Corollary 1.5. If R is a simply connected region whose boundary curve is a geodesic[thEnl A =
A0 =2m.

Example 2. We takeR to be the upper hemisphere and use the usual spherical coordinates parametriza-
tion. Then the unit tangent vector alodg is e, everywhere, sd\é = 0, in contradiction with Corollary
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1.5. Alternatively,C = dR is a geodesic, so there should be zero holonomy ar@urfdomputed with
respect to this framing).

How do we resolve this paradox? Well, although we've been sloppy about this point, the spherical
coordinates parametrization actually fails at the north pole (sipce 0). Indeed, there is no framing of
the upper hemisphere witly everywhere tangent to the equator. However, the reader can rest assured that
thereis some orthogonal parametrization of the upper hemisphere, e.g., by stereographic projection from
the south pole (cf. Example 1(e) in Section 1 of Chapter 2Y.

Remark. In more advanced courses, the holonomy around the closed eusvimterpreted as a rota-
tion of the tangent plane o at«(0). That is, what matters iay (mod2x), i.e., the change in angle
disregarding multiples diz. This quantity does not depend on the choice of franeing,.

We now set to work on one of the crowning results of surface theory.

Theorem 1.6(Local Gauss-Bonnet)SupposeR is a simply connected region with piecewise smooth

boundary in a parametrized surfaceClf= dR has exterior angles;, j = 1,....¢, then
¢
/ Kgds + // KdA+) e =2m.
OR R j=1

FIGURE1.3

Note, as we indicate in Figure 1.3, that we measure exterior angles ge;thatx for all ;.

Proof. If dR is smooth, then from our earlier discussion we infer that

/ Kgds+// KdA = A§ =27
OR R

But whenodR has corners, the unit tangent vector tulessby the amoungf-:1 €;, SO the result follows.
(Technically, what we need is the correction of the Hopf Umlaufsatz when the curve has corners. See
Exercise 1.3.12.) O

Corollary 1.7. For a geodesic triangle (i.e., a region whose boundary consists of three geodesic seg-
ments)R with interior angleaq, i, 13, we have/]R KdA = (11 + 1 +13) — 7, theangle excess

Proof. Since the boundary consists of geodesic segments, the geodesic curvature integral drops out, and

we are left with
3 3 3
// KdAZZT[—ZGj :2n—2(n—tj):ZLj—n,
R j=1 j=1 j=1

as required. O
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Remark. It is worthwhile to consider the three special cages= 0, K = 1, K = —1, as pictured in
Figure 1.4. WhenV is flat, the sum of the angles of a trianglenris as in the Euclidean case. Whah

YN

y (B >

FIGURE1.4

is positively curved, it takes more thanfor the triangle to close up, and whed is negatively curved, it
takes less. Intuitively, this is because geodesics seem to “bow out” Wherd and “bow in” whenk < 0
(cf. Exercise 3.2.17).

Example 3. Let's consider Theorem 1.6 in the case of a spherical cap, as shown in Figure 1.5. Using
the usual spherical coordinates parametrization, we bave: < uy. By Proposition 1.3 and Example 1,

Loy
—

FIGURE1.5

sinced = n/2 along thev-curve, we have, = ¢12(s) = cotuy (cf. also Exercise 2.4.4). Therefore, we

have
// KdA =2n —/ Kgds = 2m (1 — CcOSuy),
R dR

which checks, of course, sindé = 1 and the area of this cap is indeed
2 uo
/ / sinududv = 2n(1 — cosuy). \Y%
0 0

Remark. Notice that the sign ok, depends on both the orientation @fand the orientation of the
surface. If we rescale the surface by a factorcpthen the integralf,, kg ds does not change, as the
arclength changes by a factor ofand the geodesic curvature by a factorlgé. Similarly, the integral
[Jrx KdA does not change when we rescale the surface: Area changes by a factommd Gaussian
curvature changes by a factor bfc?2.
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=

FIGURE 1.6

We now come to one of the crowning results of modern-day mathematics, one which has led to much
subsequent research and generalization. We say a sufaceR? is orientedif we have chosen a con-
tinuous unit normal field defined everywhere dfi. We now consider a compact, oriented surface with
piecewise-smooth boundary, as pictured in Figure 1.6. T. Rado6 proved in 1925 that any suchMuctate

be triangulated. That is, we may wrild = Czj A; where
A=1
(i) A, isthe image of a triangle under an (orientation-preserving) orthogonal parametrization;
(i) Ap N Ay is either empty, a single vertex, or a single edge;
(i) when A, N A, consists of a single edge, the orientations of the edge are oppogite amd
A, and

(iv) at most one edge ok, is contained in the boundary o1 .

We now make a standard

Definition. Given a triangulatiorU” of a surfaceM with V' vertices,E edges, and” faces, we define
theEuler characteristicy(M,T) =V — E + F.

Example 4. We can triangulate a disk as shown in Figure 1.7, obtaining 1. Without being so

V-E+F =5-8+4 =1 V-E+F =9-18+10=1

FIGURE1.7

pedantic as to require that eash be the image of a triangle under an orthogonal parametrization, we might
just think of the disk as a single triangle with its edges puffed out; then we wouldjhavé’ — F + F =
3—-3+1=1,aswell. We leave it to the reader to triangulate a sphere and check(@af) =2. V

Remark. It's important to note that by choosing the orientations on the “triangleg’compatibly,
we get an orientation on the boundary Mf. That is, a choice ofi on M determines which direction we
proceed ordM . This is precisely the case any time one deals with Green’s Theorem (or its generalization
to oriented surfaces, Stokes’s Theorem). Nevertheless, following up on the Remark on p. 84, th& gign of
on dM is independent of the choice of orientation & for, if we changen to —n, the orientation oM
switches anch x T stays the same.
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The beautiful result to which we've been headed is now the following

Theorem 1.8(Global Gauss-Bonnet)Let M be a compact, oriented surface with piecewise-smooth
boundary, equipped with a triangulationas above. €.,k = 1,..., L, are the exterior angles 8M , then

l
/ Kgds+// KdA+ ) e =2my(M.7).
oM M k=1

Proof. As we illustrate in Figure 1.8, we will distinguish vertices on the boundary and in the interior,
denoting the respective total numbersipyandV;. Similarly, we distinguish among edges on the boundary,
edges in the interior, and edges that join a boundary vertex to an interior vertex; we denote the respective

interior verte

interior edge

interior/boundary edges

FIGURE 1.8

numbers of these b¥,, E;, andE;;. Now observe that

// KdA = Z/ KdA
R A=177Ax

since all the orientations are compatible, and

m
Keds = / Kods

because the line integrals over interior and interior/boundary edges cancel in pairs (recall thahges
sign when we reverse the orientation of the curve). dyet j = 1,2, 3, denote the exterior angles of the
“triangle” A, . Then, applying Theorem 1.6 b, we have

3
/ Kgds+/ KdA-i—Ze,U:Zn,
AL Ay j=1

and now, summing over the triangles, we obtain

m 3
/ Kgds+// KdA+ > e;; =2wm =2nF.
oM M

A=1j=1
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Now we must do some careful accounting: Letting denote the respective interior angles of trianglg,
we have

(%) D= ) (1) =nQE + Eyp) - 2nV;
interior interior
vertices vertices

inasmuch as each interior edge contributes two interior vertices, whereas each interior/boundary edge con-
tributes just one, and the interior angles at each interior vertex sam.tblext,

L
() Z €) =7rE,-b+Zek.
k=1

boundary
vertices

To see this, we reason as follows. Given a boundary vertelenote by a superscript) the relevant angle
or number for which the vertex is involved. Note first of all that any boundary vertexs contained in
El.(l’)’) + 1 faces. Moreover, for a fixed boundary vertgx

Z ®) T, v a smooth boundary vertex
L = .
A , ,

/ T — €, vacorner odM with exterior angle;,

Thus,

Z € = Z (r —y)) = Z n(Ei(Z)-l—l)—( Z Ly + Z L,U)

boundary boundary boundary v smooth v corner
vertices verticesv verticesv

L
=nk;p+ Z €k -
k=1

Adding equations%) and ¢ x) yields

)2
ZE)U-: Z €r; + Z E)tjzzﬂ(Ei-l-Eib—Vi)-i-Zék.
AJj

interior boundary k=1
vertices vertices

At long last, therefore, our reckoning concludes:

)2
/ Kgds+// KdA—i—Zék:ZJT(F—(Ei-i-Eib)-l-Vi)
oM M k=1

=2n(F —(Ei + Eip + Ep) + (Vi + Vp)) =22(V — E + F)
=2mx(M,7T).
(Note that because the boundary cusvé is closed, we havé), = E,.) O
We now derive some interesting conclusions:

Corollary 1.9. The Euler characteristig(M,T) does not depend on the triangulatidrof M .

Proof. The left-hand side of the equality in Theorem 1.8 has nothing whatsoever to do with the trian-
gulation. O
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It is therefore legitimate to denote the Euler characteristig @\ ), with no reference to the triangulation.

It is proved in a course in algebraic topology that the Euler characteristic is a “topological invariant”; i.e., if
we deform the surfac@/ in a bijective, continuous manner (so as to obtahbeneomorphisurface), the
Euler characteristic does not change. We therefore deduce:

Corollary 1.10. The quantity

L
/ Kgds+// KdA+) e
oM M k=1

is a topological invariant, i.e., does not change as we deform the suface

In particular, in the event thatM = @ (so many people refer to the surfake as aclosedsurface), we
have

Corollary 1.11. WhenM is a compact, oriented surface without boundary, we have

//M KdA =2ny(M).

Itis very interesting that thiotal curvaturedoes not change as we deform the surface, for example, as shown
in Figure 1.9. In a topology course, one proves that any compact, oriented surface without boundary must

S

[y KdA = 4n

FIGURE1.9

have the topological type of a sphere or of-#oled torus for some positive integgr Thus (cf. Exercise
4), the possible Euler characteristics of such a surface,@xe-2, —4, ...; moreover, the integrgl,, Kd A
determines the topological type of the surface.

We conclude this section with a few applications of the Gauss-Bonnet Theorem.

Example 5. SupposeV! is a surface of nonpositive Gaussian curvature. Then there cannot be a geodesic
2-gon R on M that bounds a simply connected region. For if there were, by Theorem 1.6 we would have

02// KdA =2m — (1 + €2) > 0,
R

which is a contradiction. (Note that the exterior angles must be strictly lessritbacause there is a unique
(smooth) geodesic with a given tangent direction.y

Example 6. SupposeV is topologically equivalent to a cylinder and its Gaussian curvature is negative.
Then there is at most one simple closed geodesi#f/in Note, first, as indicated in Figure 1.10, that if
there is a simple closed geodeaiceither it must separat® into two unbounded pieces or else it bounds



§1. HOLONOMY AND THE GAUSS-BONNET THEOREM 89

o must be like one of these

FIGURE1.10

a disk R, in which case we would have > ([ KdA = 27x(R) = 2m, which is a contradiction. On

the other hand, suppose there were two. If they don’t intersect, then they bound a ciliaddrwe get

0> [[r KdA = 27 x(R) = 0, which is a contradiction. If they do intersect, then we we have a geodesic
2-gon bounding a simply connected region, which cannot happen by Exampl&5.

EXERCISES 3.1

1. Compute the holonomy around the paralle:= uy (and indicate which direction the rotation occurs
from the viewpoint of an observer away from the surface dowrxtagis) on
*a. the torusx(u, v) = ((a + b cosu) cosv, (a + b cosu) sinv, b sinu)
b. the paraboloic(u, v) = (1 cosv,u sinv, u?)
c. the catenoic(u,v) = (coshu cosv, coshu sinv, u)

*2. Determine whether there can be a (smooth) closed geodesic on a surface when

a K>0
b. K=0
c. K<0

If the closed geodesic can bound a simply connected region, give an example.

3. Calculate the Gaussian curvature of a torus (as parametrized in Example 1(c) of Section 1 of Chapter 2)

and verify Corollary 1.11.

4. a. Triangulate a cylinder, a sphere, a torus, and a two-holed torus; verify taa®, 2, 0, and—2,
respectively. Pay particular attention to condition (i) in the definition of triangulation.
b. Prove by induction that g-holed torus hag = 2 — 2g.

5. SupposeM is a compact, oriented surface without boundary thatosof the topological type of a
sphere. Prove that there are pointsnwhere Gaussian curvature is positive, zero, and negative.

6. LetM be a surface wittk > 0 that is topologically a cylinder. Prove that there cannot be two disjoint
simple closed geodesics both going around the neck of the surface.

7. Supposé andM* are locally isometric and compatibly oriented. Use Proposition 1.3 to prove that if

a anda™® are corresponding arclength-parametrized curves, then their geodesic curvatures are equal at

corresponding points.
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8.

10.

11.

12.

13.
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Consider the paraboloif parametrized by(u,v) = (ucosv,usinv,u?),0 < u, 0 < v < 2.
Denote byM, that portion of the paraboloid defined By< u < r.
a. Calculate the geodesic curvature of the boundary circle and confpute ¢ ds.

b. Calculatey(M,;). M,
c. Use the Gauss-Bonnet Theorem to compfife KdA. Find the limit asr — oo. (This is the

total curvature of the paraboloid.) My
d. CalculateK directly (however you wish) and compu K d A explicitly.

M
e. Explain the relation between the total curvature and the image of the Gauss Map of

Consider the pseudosphere (with boundddyparametrized as in Example 8 of Chapter 2, Section 2,
but here we taka > 0. Denote byM, that portion defined b9 < u < r. (Note that we are including
the boundary circlee = 0.)
a. Calculate the geodesic curvature of the citcle: 1y and compute/3 kgds. Watch out for the

M,

orientations of the two circles.
b. Calculatey(M,).

c. Use the Gauss-Bonnet Theorem to compife KdA. Find the limit asr — oo. (This is the
M,
total curvature of the pseudosphere.)

d. Calculate the area d@ff, directly, and use this to deduce the value/ff KdA.
M

e. Explain the relation between the total curvature and the image of the Gauss Map of

Give a different version of the accounting to prove Theorem 1.8 as follows.

a. ShowthaBF = 2(E; + E;p) + Ep, and conclude th&F = 2E — V.

b.  Show thad i erior verticestrj = 27Vi andX:boundary verticedAj = Vb — 2 €k

c. Concludetha}’; ;ey; =3nF =), ;t1; = 2n(E —V) + )€ and complete the proof of the
theorem.

a. Use Corollary 1.4 to prove that is flat if and only if the holonomy around all (“small”) closed
curves that bound a region M is zero.
b. Show that even on a flat surface, holonomy can be nontrivial around certain curves.

Reprove the result of part a of Exercise 2.3.14 by considering the holonomy around a (sufficiently small)

quadrilateral formed by four of the lines. Does the result hold if there are two familigsaafesicsn
M always intersecting at right angles?

In this exercise we explore what happens when we try to apply the Gauss-Bonnet Theorem to the

simplest non-smooth surface, a right circular cone. R eenote the surface given in Exercise 2.4.5 and

dR its boundary curve.
a. Show that if we make& by gluing the edges of a circular sector (“pacman”) of central aggle
as indicated in Figure 1.11, theﬁ kgds = 2m sing = B. We call 8 thecone angleof R at its

dR
vertex.

b. Show that Theorem 1.6 holds férif we add2x — g to [[, KdA.
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FIGURE1.11

c. Show that we obtain the same result by “smoothing” the cone point, as pictured in Figure 1.12.
(Hint: InterpretffR K dA as the area of the image of the Gauss map.)

v

FIGURE1l.12

Remark. Itis not hard to give an explici€? such smoothing. For example, constru@?aconvex
function f on [0, 1] with £(0) = f’(0) =0, f(1) = f'(1) = 1, and (1) = 0.

14. Suppose is a closed space curve with# 0. Assume that theormal indicatrix(i.e., the curve traced
out on the unit sphere by the principal normal) is a simple closed curve in the unit sphere. Prove then
that it divides the unit sphere into two regions of equal area. (Hint: Apply the Gauss-Bonnet Theorem
to one of those regions.)

15. Supposéd C R3 is a compact, oriented surface with no boundary wkth> 0. It follows that M is
topologically a sphere (why?). Prove thet is convex; i.e., for eacl® € M, M lies on only one side
of the tangent plan&p M. (Hint: Use the Gauss-Bonnet Theorem and Gauss’s original interpretation
of curvature indicated in the remark on p. 51 to show the Gauss map must be one-to-one (except perhaps
on a subset with no area). Then look at the end of the proof of Theorem 3.4 of Chapter 1.)

2. An Introduction to Hyperbolic Geometry

Hilbert proved in 1901 that there is no surface (without boundariRPiwith constant negative curvature
with the property that it is a closed subset®? (i.e., every Cauchy sequence of points in the surface
converges to a point of the surface). The pseudosphere fails the latter condition. Nevertheless, it is possible
to give a definition of an “abstract surface” (not sitting insi®®) together with a first fundamental form.
As we know, this will be all we need to calculate Christoffel symbols, curvature (Theorem 3.1 of Chapter
2), geodesics, and so on.

Definition. The hyperbolic planeH is defined to be the half-plangu, v) € R? : v > 0}, equipped
with the first fundamental form | given b = G = 1/v?, F = 0.
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Now, using the formulasi on p. 58, we find that

E E 1
FJL:%:Q Fu1;4=—ﬁ=;
E 1 G

Lo =26 = 7% fwv =56 =
Gu Gv l

Fu:——: U:_:__'

vy 2E 0 v 2G v

Using the formula %) for Gaussian curvature on p. 60, we find

1 E G 2,2 2 2
k=7 () (G - 35, =5 5=

2WEG EG/v EG/u 2 v3 v 2 2
Thus, the hyperbolic plane has constant curvatureNote that it is a consequence of Corollary 1.7 that the
area of a geodesic triangle liis equal tor — (¢1 + t2 + t3).

What are the geodesics in this surface? Using the equada®¥dn p. 71, we obtain the equations
u// _ zulvl — U// + l(uxz _ UIZ) =0.
v v

Obviously, the vertical rays = const give us solutions (with(r) = c1e°2’). Next we seek geodesics with

/
u’ # 0, so we start withjl—v = U—, and apply the chain rule judiciously:
u u

du?  du \v u'? u’

“ ()= (Gr))
_%(H(Z_j) ):_%(H(j_;) )

This means we are left with the differential equation

du? du) — du\ du)

and integrating this twice gives us the solutions

d?v d (v’) uv" —uv 1

u? +v?> =au+b.

That is, the geodesics iH are the vertical rays and the semicircles centered ornsthris, as pictured
in Figure 2.1. Note that any semicircle centered onitkexis intersects each vertical line at most one
time. It now follows that any two point®, O € H are joined by a unique geodesic. #f and Q lie on

a vertical line, then the vertical ray through them is the unique geodesic joining thefmarfd O do not

lie on a vertical line, leC be the intersection of the perpendicular bisecto@ and theu-axis; then the
semicircle centered & is the unique geodesic joining and Q.

Example 1. Given P, 0 € H, we would like to find a formula for the (geodesic) distarbe’, Q)
between them. Let’s start with = (ug,a) andQ = (ug,b), with 0 < a < b. Parametrizing the line
segment fromP to Q byu = ug,v =t,a <t < b, we have

b b
d(P, Q) :/ JEW©)? + G/ (02di = % —ink.

a a
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FIGURE2.1

Note that, fixingQ and letting P approach the:-axis, d(P, Q) — oo; thus, it is reasonable to think of
points on thes-axis as “virtual” points at infinity.
In general, we parametrize the arc of a semicifelg + r cost, r sint), 61 <t < 6,, going fromP to

0, as shown in Figure 2.2. Then we have

FIGURE2.2

0>
d(P,Q) = /0 \/Eu’(z)Z + Gv/(t)2dt

%2 dt
/91 sint

B /92 rdt
B 61 rsint

(1+cos€1/
= |In -
sin6,

= |In (ﬂ Q)
8P/ BO

El

where the lengths in the final formula are Euclidean. (See Exercise 12 for the connection with cross ratio.)

\Y%

1 + cosb,
sin6,

_ | [2C0%01/2) [ 2c0d0,/2)
~ 7\ 2sn(61/2) / 2sn(62/2)

It follows from the first part of Example 1 that the curwes= ¢ andv = b are a constant distance apart

(measured along geodesics orthogonal to both), like parallel lines in Euclidean geometry. These curves are
classically callechorocycles As we see in Figure 2.3, these curves are the curves orthogonal to the family

of the “vertical geodesics.” If, instead, we consider all the geodesics passing through a give@ patnt

infinity” on v = 0, as we ask the reader to check in Exercise 5, the orthogonal trajectories will be curves in

H represented by circles tangent to thexis atQ.

Example 2. Let’s calculate the geodesic curvature of the horocycte a. We start by parametrizing

the curve by (7) = (¢,a). Thena/(¢) = (1,0). Note thatu(z) = |l&/(¢)|| = vV E(1)2 + G(0)2 = 1/a. By
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FIGURE2.3

Proposition 1.1,
1 _ 1
p12 = ——=Q2a7> 1) = —.
2./ a
a?
(Heree; = v(1,0) ande, = v(0, 1) at the point(u, v) € H. Why?) To calculate the geodesic curvature,
we wish to apply Proposition 1.3, which requires differentiation with respect to arclength, so we’ll use the

chain rule as in Chapter 1, multiplying thelerivative byl /v(t) = a. Note, also, that’ makes the constant
angled = 0 with e, sof’ = 0. Thus,

1 1
Kg=—¢12=a';=l,

v(t)

as required. V

We ask the reader to do the analogous calculations for the circles tangentt@figein Exercise 6.
Moreover, as we ask the reader to check in Exercise 7, every curideohconstant geodesic curvature
kg = 1is ahorocycle.

The isometries of the Euclidean plane form a group, the Euclidean gt@2p the isometries of the
sphere likewise form a group, the orthogonal grad8). Each of these is a-dimensional Lie group.
Intuitively, there are three degrees of freedom because we must specify where & guies (two degrees
of freedom) and where a single unit tangent vector at that pigbes (one more degree of freedom). We
might likewise expect the isometries Bf to form a3-dimensional group. And indeed it is. We deal with
just the orientation-preserving isometries here.

We considetl C C by letting (u, v) correspond ta = u + iv, and we consider the collection lofiear
fractional transformations

b
T(z):az+ , a,b,c,d eR, ad—bc=1.
cz+d

We must now check several things:

(i) Composition of functions corresponds to multiplication of thex 2 matrices[a. ﬂ with
determinantl, so we obtain a group. ‘
(i) T mapsH bijectively toH.
(i) T is anisometry oftl.
We leave it to the reader to check the first two in Exercise 8, and we check the third here. Given the point
z = u + iv, we want to compute the lengths of the vectdysand T, at the image poinf'(z) = x + iy
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and see that the two vectors are orthogonal. Note that

az+b  (az+b)(cZ+d) _ (au+iv) +b)(c(u—iv) +d)

cz+d lcz + d|? lcz + d|?
(ac? + v?) + (ad + bc)u) +i((ad — be)v)
N lcz +d|? '
soy = ———. Now we havé
PP
. , (cz4+d)a—(az + b)c 1
= — = T/ = = s
Xu iy = —ixo +yo =T') (cz+d)? (cz+d)?
so we have
2 .2
. x24y 1 1 1 1
E="%_"%_ 17T =—m ———— = — =F,
y? y2| @)l y2 ez +d[* 02
2 .2
and, similarly,G = @ = G. On the other hand,
y
F= XuYu + XpYv Xy (—=Xy) + Xy (oxu) —0=F,

»? a »?
as desired.

Now, as we verify in Exercise 12 or in Exercise 14, linear fractional transformations carry lines and
circles inC to either lines or circles. Since our particular linear fractional transformations preserve the real
axis (U{oo}) and preserve angles as well, it follows that vertical lines and semicircles centered on the real
axis map to one another. Thus, our isometries do in fact map geodesics to geodesics (how comforting!).

If we think of H as modeling non-Euclidean geometry, with lines in our geometry being the geodesics,
note that given any liné and pointP ¢ £, there arenfinitely manylines passing throug® “parallel”
to (i.e., not intersectingy. As we see in Figure 2.4, there are two special lines thraBghat “meet? at

FIGURE2.4

infinity”; the rest are often calledltraparallels

We conclude with an interesting application. As we saw in the previous section, the Gauss-Bonnet
Theorem gives a deep relation between the total curvature of a surface and its topological structure (Euler
characteristic). We know that if a compact surfadeis topologically equivalent to a sphere, then its total
curvature must be that of a round sphere, nardely If M is topologically equivalent to a torus, then (as
the reader checked in Exercise 3.1.3) its total curvature must We know that there is no way of making

3These are the Cauchy-Riemann equations from basic complex analysis.
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FIGURE 2.5

the torus inR3 in such a way that it has constant Gaussian curvakiiee 0 (why?), but wecanconstruct a
flat torus inR* by taking

X(u,v) = (cosu, sinu, cosv, Sinv), 0<u,v <2m.

(We take a piece of paper and identify opposite edges, as indicated in Figure 2.5; this can be rolled into a
cylinder inR3 but into a torus only iiR*.) So what happens with2holed torus? In that casg(M) = —2,

so the total curvature should betr, and we can reasonably ask if there'@-aoled torus withconstant
negative curvature. Note that we can obtaitrlzoled torus by identifying pairs of edges on an octagon, as

FIGURE 2.6

shown in Figure 2.6.

This leads us to wonder whether we might have regulgonsR in H. By the Gauss-Bonnet formula,
we would have arg&R) = (n—2)w —)_¢;, S0 it’s obviously necessary that (; < (n—2)x. This shouldn’t
be difficult so long as > 3. First, let's convince ourselves that, given any paie H, 0 < a < , and
0 < B < (r —a)/2, we can construct an isosceles triangle with vertex amgle P and base anglg. We

~

Q

& 27¢g

FIGURE2.7

draw two geodesics emanating frafhwith anglex between them, as shown in Figure 2.7. Proceeding a
geodesic distance on each of them to point® and R, we then obtain an isosceles triangle? QR with
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vertex anglex. Now, the base angle of that triangle approacties- «)/2 asr — 01 and approaches
asr — oo. It follows (presuming that the angle varies continuously witthat for some-, we obtain the
desired base ang|g. Let's now apply this construction witth = 27/n andf = n/n, n > 5. Repeating
the constructiom times (dividing the angle aP into n angles of2x/n each), we obtain a regulargon
with the property thad " :; = 27, as shown (approximately?) in Figure 2.8 for the case 8. The point

FIGURE 2.8

is that because the interior angles add upst¢o when we identify edges as in Figure 2.6, we will obtain a
smooth2-holed torus with constant curvatuié = —1. The analogous construction works for tfdnoled

torus, constructing a reguldg-gon whose interior angles sum2a.

EXERCISES 3.2

1. Find the geodesic joining and Q in H and calculate/(P, Q).
a. P=(4,3),0=(-3,4
*n. P=(1,2),0 =(0,1)
c. P=(10,15), Q0 = (2,19
2. Suppose there is a geodesic perpendicular to two geodeditsWhat can you prove about the latter
two?
3. Prove the angle-angle-angiengruenceheorem for hyperbolic triangles: ¥4 ~ /A’, /B =~ /B’,
andZC =~ /ZC’,thenAABC =~ AA'B’C’. (Hint: Use an isometry to movd’ to 4, B’ along the
geodesic fromd to B, andC’ along the geodesic from to C.)

4. a. Verify Local Gauss-Bonnet, Theorem 1.6, for the regiohounded byt = A4, u = B, v = aq,

andv = b.
b. Verify Local Gauss-Bonnet for the regighbounded by the segment= a, A < u < B, and the

geodesic joining the two endpoints.
c. Use Local Gauss-Bonnet (and the analysis of part b) to deduce the result of Example 2.
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Show that the circles tangent to theaxis at the origin are the orthogonal trajectories of the family
of geodesicsi? — 2cu + v2 = 0, ¢ € R (together with the positive-axis). (Hint: Remember that

orthogonal lines have slopes that are negative reciprocals. Elimitatbtain the differential equation

d 2 _ . _ _ I .
v _ % and solve this “homogeneous” differential equation by substitutieguz and getting

du  u*—v* . i
a separable differential equation forandz.)

a. Prove that circles tangent to tir@xis havec, = 1.
b. Prove that the horocycleg +v2—2av = 0 andu?+v?—2bhv = 0 are a constant geodesic distance
apart. (Hint: Consider the intersections of the two horocycles with a geoglesiQcu + v? =0

orthogonal to them both.)

Prove that every curve iHl of constant geodesic curvaturg = 1 is either a horizontal line (as in
Example 2) or a circle tangent to theaxis. (Hints: Assume we start with an arclength parametrization

/

(u(s),v(s)), and use Proposition 1.3 to show that we have Y 4 ¢ andu’? + v’ = v2. Obtain the
v

3/2
= (1 () - (G

and solve this by substituting= dv/du and getting a separable differential equationdoydv.)

differential equation

b .
LetT, peq(z) = — +d,a,b,c,d € R, with ad — be = 1.

CcZ
a. Suppose’,b’,¢’,d’ e Randa’d’ — b’¢’ = 1. Check that

Ta’,b/,c’,d’oTa,b,c,d = Ta/a+b’c,a/b—i—b/d,c/a—i—d/c,c’b—i—d’d and
(@a+bcyc'b+d'd)y—(a'b+bd)c'a+dc)=1.

Show, moreover, thaty 5 ., = T;;;,c,d- (Note that7, p .y = T_4,—p,—c,—a- The reader
who'’s taken group theory will recognize that we’re defining an isomorphism between the group of
linear fractional transformations and the gratip(2, R) /{41 } of 2 x 2 matrices with determinant
1, identifying a matrix and its additive inverse.)

b. LetT =T,4.,4- Provethatifz = u +ivandv > 0, thenT(z) = x + iy with y > 0. Deduce
thatT mapsH to itself bijectively.

Show thateflectionacross the geodesic= 0 is given byr(z) = —z. Use this to determine the form
of the reflection across a general geodesic.

The geodesic circle of radiug centered afP is the set of pointg) so thatd(P, Q) = R. Prove that
geodesic circles iffl are Euclidean circles. One way to proceed is as follows: The geodesic circle
centered at? = (0, 1) with radiusR = Ina must pass throug{0, «) and(0, 1/a), and hence ought to

be a Euclidean circle centered(@t %(a + 1/a)). Check that all the points on this circle are in fact a
hyperbolic distanc&® away fromP. (Hint: It is probably easiest to work with the cartesian equation of
the circle. Find the equation of the geodesic throdgand an arbitrary point of the circle.)

What is the geodesic curvature of a geodesic circle of ralliusH? (See Exercise 10.)
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12. Recall (see, for example, p. 298 and pp. 350-1 of ShifAb'stract Algebra: A Geometric Approgch
that thecross ratioof four numbers4, B, P, O € C U {0} is defined to be

Q-4 /Q0—-B

P—-Al P-B’

a. Showthat4, B, P, andQ lie on a line or circle if and only if their cross ratio is a real number.

b. Prove thatifS is a linear fractional transformation witf(A4) = 0, S(B) = oo, andS(P) = 1,
thenS(Q) = [A: B : P : Q]. Use this to deduce that for any linear fractional transformation
we have[T(A) : T(B): T(P): T(Q)]=[A:B:P:0Q].

c. Prove that linear fractional transformations map lines and circles to either lines or circles. (For
which such transformations do lines necessarily map to lines?)

d. Show thatif4, B, P, andQ lie on a line or circle, then

[A:B:P:Q0]=

AQ /BQ
A:B:P: =—/—.
I oll="5/%p
Conclude that/(P, Q) = |In[A : B : P : Q]|, whereA, B, P, andQ are as illustrated in Figure

2.2.
e. Check that iff" is a linear fractional transformation carryinggto 0, B to oo, P to P/, andQ to
Q’,thend(P, Q) =d(P’, Q).

13. a. LetO be any point not lying on a circl€ and let P and Q be points on the circl€ so that
O, P, and Q are collinear. Letl' be the point onC so thatOT is tangent to2. Prove that
(OP)(0Q) = (0OT)2.

b. Defineinversionin the circle of radiusk centered aD by sending a poinf to the pointP’ on
the rayOP with (OP)(OP’) = R?. Show that an inversion in a circle centered at the origin maps
a circle @ centered on th&-axis andnot passing througtO to another circle®’ centered on the
u-axis. (Hint: For anyP € C, let Q be the other point o collinear withO and P, and letQ’ be
the image ofQ under inversion. Use the result of part a to show &/ 0Q’ is constant. IfC
is the center o, let C’ be the point on the-axis so thaiC’Q’||CP. Show thatQ’ traces out a
circle @ centered aC’.)

c. Show that inversion in the circle of radidscentered aD maps vertical lines to circles centered
on theu-axis and passing through and vice-versa.

14. a. Prove that every (orientation-preserving) isometiy cin be written as the composition of linear
fractional transformations of the form

1
Ti(z)=z+b forsomebeR, Tr(z)=-—-, and T3(z) =cz forsomec > 0.
zZ

(Hint: It's probably easiest to work with matrices. Show that you have matrices of the form

[a 0 ] [1 b}, [O _1}, and therefore{1 0}, and that any matrix of determinahtcan be
0 1/a 0 1 1 0 b 1

obtained as a product of such.)
b. Prove thafl; maps circles centered on theaxis and vertical lines to circles centered onthaxis
and vertical lines (not necessarily respectively). Either do this algebraically or use Exercise 13.
c. Use the results of parts a and b to prove that isometrigsrofip geodesics to geodesics.
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15.

16.

17.
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We say a linear fractional transformatién= T, ; . 4 is elliptic if it has one fixed point, parabolic if it

has one fixed point at infinity, and hyperbolic if it has two fixed points at infinity.

a. Show that is elliptic if |a + d| < 2, parabolic ifla + d| = 2, and hyperbolic ifa + d| > 2.

b. Describe the three types of isometries geometrically. (Hint: In particular, what is the relation
between horocycles and parabolic linear fractional transformations?)

SupposA ABC is a hyperbolic right triangle with “hypotenuse” Use Figure 2.9 to prove the follow-

ing:
sinh tanhb

sinZA = — a, COSLA = ——,

sinhc tanhc

(The last is the hyperbolic Pythagorean Theorem.) (Hint: Start by showing, for example, that-eosh

coshc = coshu coshb.

A
KC
ﬂ‘%

FIGURE2.9

csch, coshe = (1 — cosy cost)/(siny sint), and cog — cosy = sint cotf. You will need two
equations trigonometrically relating andr.)

Given a pointP? on a surfacéf, we define the geodesic circle of radiRscentered aP to be the locus
of points whose (geodesic) distance frdhis R. Let C(R) denote its circumference.
a. Show that on the unit sphere
im 2nR — C(R) _ 1
R—>0+ 7R3 3
b. Show that the geodesic curvature, of a spherical geodesic circle of radiug is
COtR ~ L(1—& 1 ),

The Poincaé diskis defined to be the “abstract surfad®”= {(u,v) : u? + v? < 1} with the first

2
F=0,6=—"_ This

fundamental form given, in polar coordinatesf), by F = =22
—r

4
(1 —r2)2’
is called thehyperbolic metricon D.

c. Check that irD the geodesics through the origin are Euclidean line segments; conclude that the
Euclidean circle ?zf radius centered at the origin is a hyperbolic circle of radRis= In 1 i_ : ,
and sor = tanh—. (Remark: Other geodesics are semicircles orthogonal to the unit circle, the
“virtual boundary” of D. This should make sense since there is a linear fractional transformation
mappingH to D; by Exercise 12c, it will map semicircles orthogonal to thaxis to semicircles
orthogonal to the unit circle.)

d. Check that the circumference of the hyperbolic circle 87 sinhR A

27(R + %3 +...), andso

_ 27R—C(R) 1
im — —— 2 = __
R—0+ 7R3 3
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e. Compute (using a double integral) that the area of a disk of hyperbolic rRdsigs sinh? § ~
TR?*(1 + If—; + ...). Use the Gauss-Bonnet Theorem to deduce that the geodesic curatire
the hyperbolic circle of radiu® is cothR = %(1 + RTz + ...

18. Here we give another model for hyperbolic geometry, called the Klein-Beltrami model. Consider the fol-
lowing parametrization of the hyperbolic disk: Start with the open wunit disk,
{xf + x§ <1, x3 = 0}, vertically project to the southern hemisphere of the unit sphere, and then
stereographically project (from the north pole) back to the unit disk.
a. Show that this mapping is given in polar coordinates by

X(R, ) = (r,0) = (L 0).

14+ V1—R?
Compute that the first fundamental form of the Poincaré metri deee Exercise 17) is given
. 1 - - R?
in (R, 0) coordinates bhf = ——  F =0, G = . (Hint: Compute carefully and
(R.6) ¥ = gy - p y

economically!)
b. Compute the distance frof, 0) to (a, 0); compare with the formula for distance in the Poincaré
model.

c. Changing now to Euclidean coordinatasv), show that
2

A 1— A A 1—u?
:—U, F:L’ G:—u’
(1 —u2 —v2)2 (1 —u2—12)2 (1 —u2—12)2
whence you derive
2u
u __ v o _
b =752 2 fu =0
u __ v v o__ u
1_‘u”_l—uz—vz’ l_‘"v_l—uz—vz’
2v
u __ v o _
v =0 b = T

d. Use part b to show that the geodesics of the disk using the first fundamental éoenchords of
the circleu? + v? = 1. (Hint: Show (by using the chain rule) that the equations for a geodesic give
d?v/du® = 0.) Discuss the advantages and disadvantages of this model (compared to Poincaré’s).
e. Check your answer in part ¢ by proving (geometrically?) that chords of the circle mapoby
geodesics in the hyperbolic disk. (See Exercise 2.1.8.)

3. Surface Theory with Differential Forms

We've seen that it can be quite awkward to work with coordinates to study surfaces. (For example, the
Codazzi and Gauss Equations in Section 3 of Chapter 2 are far from beautiful.) For those who've learned
about differential forms, we can given a quick and elegant treatment that is conceptually quite clean.

We start (much like the situation with curves) witmeving framee;, e,, €3 on (an open subset of) our
(oriented) surfacé/. Hereg; are vector fields defined ol with the properties that

(i) {e1, e, €3} gives an orthonormal basis f&2 at each point (so the matrix with those respective
column vectors is an orthogonal matrix);
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(i) {e1,e} is abasis for the tangent spaceMfande; = n.

How do we know such a moving frame existsxil/ — M is a parametrized surface, we can start with
our usual vectors,, X, and apply the Gram-Schmidt process to obtain an orthonormal basis. @r, if
is a surface containing no umbilic points, then we can ch@psande, to be unit vectors pointing in the
principal directions; this approach was tacit in many of our proofs earlier.

If x: M — R3 is the inclusion map (which we may choose, in a computational setting, to consider as
the parametrization mappiig — R?3), then we defind-formswi, w, on M by

dX = w1€] + w28

i.e., foranyV € Tp M, we haveV = w(V)e; + wa(V)er, sow, (V) = 1(V, g,) fora = 1,2. So far,w;
andw, keep track of how our point moves around &h Next we want to see how the frame itself twists,
so we defind-formsw;;,7,j = 1,2,3, by

3
de = Za)ijej.
Jj=1

Note that since; - €; = const for anyi, j = 1,2, 3, we have

3 3
0=d(g -ej) =deg ‘€ 1+ 6 ~dej = (Za)ikek) -6 + (Za)jkek) -6
k=1 k=1
= wjj + wji,
sow;; = —w;; foralli, j = 1,2,3. (In particular, sinces; is always a unit vector;; = 0 for all i.) If

V eTpM, w;j(V) tells us how fasg; is twisting towardse; at P as we move with velocity/.
Note, in particular, that the shape operator is embodied in the equation

des = w318 + w06 = —(wi3e] + W3e).
Then for anyv € Tp M we havew;3(V) = 11 (V, e1) andw,3(V) = I (V, &). Indeed, when we write
w13 = h11w1 + hip0;
w23 = ha1w1 + hasws

for appropriate coefficient functiorig,g, we see that the matrix of the shape operatewith respect to the
basis{e;, &} for Tp M is nothing buff /44 ].
Most of our results will come from the following

Theorem 3.1(Structure Equations)
doi1 = w2 Awy and dwy = w1 N w12, and
3
doj =Y wy Ao foralli,j =1,2.3.

k=1

Proof. From the properties of the exterior derivative, we have

3 3
0= d(dX) =dwi1€ + dwye — w1 A (Zwljej) —wy N (szjej)
j=1 j=1
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= (da)l — w2y A 6021)91 + (da)2 —wi1 N 6012)62 — (601 ANwW13 + wa A a)23)e3,
so from the fact thafe, , e;, e3} is a basis foiR3 we infer that
dwi = w2 A w1 = —Wy A W12 = W12 A Wa and dwy = w1 A w12.

Similarly, we obtain
3 3
0=d(de) = d( Z wikek) = Z (da),-kek — Wik N Za)kjej)
k=1 =1 j=1
3 3 3 3
= Zda),-jej — Z ( Z Wik /\wkj)ej = Z (da),-j - Z Wik /\wkj)ej,
j=1

j=1 k=1 j=1 k=1

bl

3
sodwij — Y wik ANwg; =0foralli,j. O
k=1

We also have the following additional consequence of the proof:
Proposition 3.2. The shape operator is symmetric, ile; = ha;.

Proof. From thee; component of the equatiaf(dx) = 0 in the proof of Theorem 3.1 we have
0=w1 Aw13 + w2 Awzz = w1 A (h1101 + h12w2) + 02 A (ha101 + haowa) = (h12 — ha1)w1 A w3,
SOhip —hy; = 0. O

Recall thatV is a principal direction ifdes;(V) is a scalar multiple o¥/. Soe; ande, are principal
directions if and only ifi;, = 0 and we havev,3 = k1w andw,3 = kow,, wherek, andk, are, as usual,
the principal curvatures.

It is important to understand how our battery of forms changes if we change our moving frame by
rotatinge;, e; through some anglé (which may be a function).

Lemma 3.3. Suppos&; = cosbe; + sinfe, ande, = —sinfe; + cosbe, for some functiort. Then
we have

w1 = cosOw; + Sinbw,
w, = —Sinfw; + cosbw,
w1y = w12 + dO
w13 = CO0SAw13 + SiNBws3
w3 = —SiNfwi3 + cosbw,3
Note, in particular, thab, A Wy, = w1 A wy andw13 A W23 = W13 A W23.
Proof. We leave this to the reader in Exercise 1]

It is often convenient when we study curves in surfaces (as we did in Sections 3 and 4 of Chapter 2)
to use the Darboux frame, a moving frame for the surface adapted sg tisatangent to the curve. (See
Exercise 3.) For example, is a geodesic if and only if in terms of the Darboux frame we haye= 0 as
al-formone.

Let's now examine the structure equations more carefully.
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Gauss equation: dwir = —w13 A w23
Codazzi equations: dwiz = w12 A W23
dwr3 = —w12 A 013

Example 1. To illustrate the power of the moving frame approach, we reprove Proposition 3.4 of Chap-

ter 2. Suppos& = 0 and M has no planar points. Then we claim thdtis ruled and the tangent plane

of M is constant along the rulings. We work in a principal moving frame with= 0, sow;3 = 0.
Therefore, by the first Codazzi equatiafyp;3 = 0 = w12 A w23 = w12 A kaws. Sinceky # 0, we

must havewi; A wp, = 0, and sow1, = fw, for some functionf. Therefore,wi,(e;) = 0, and so
dei(e)) = wiz(e1)e + wi3(er)e; = 0. It follows thate; stays constant as we move in #edirection, so
following the e; direction gives us a line. Moreovefes;(e;) = 0 (sincek; = 0), so the tangent plane to

M is constant along that line. V

The Gauss equation is particularly interesting. First, note that
w13 A 23 = (h1101 + h12w2) A (h1201 + haowy) = (hi1hay — h3,)w1 A wy = KdA,
whereK = det[haﬂ] = detSp is the Gaussian curvature. So, the Gauss equation really reads:
(%) dwip = —KdA.

(How elegant!) Note, moreover, that, by Lemma 3.3, for any two moving fr&nes, e; andé;, &, €3, we
havedwi, = dw12 (Which is good, since the right-hand side ®j loesn’t depend on the frame field). Next,
we observe that, because of the first equations in Theorerwg: Iian be computed just from knowiragy
andw,, hence depends just on the first fundamental form of the surface. (If weantte= Pw; + Qwa,
then the first equation determin@sand the second determin€s) We therefore arrive at a new proof of
Gauss’s Theorema Egregium, Theorem 3.1 of Chapter 2.

Thel-form wq, is called theconnection formand measures the tangential twisepf Just as we saw in
Section 1, thenYy e, is the tangential component dfye; = de (V) = w12(V)e + w13(V)es, which is,
of coursewiz(V)es. In particular,wi,(e;) recovers the geodesic curvature of ghecurve.

Example 2. Let’'s go back to our usual parametrization of the unit sphere,

X(u,v) = (Sinu cosv, sinu sinv, cosu), O<u<mn, O0<v<2m.
Then we have

dX = Xy du + Xy dv = (CoSu cosv, cosu Sinv, — sinu) du + (— sinv, cosv, 0)(sSnudv).

er €

Note thate; = x, ande; = Xv/\/E, as we might expect. So this gives us
w1 = du and wy = Sinudv.

Next,dw; = 0 anddw, = cosudu A dv = du A (cosudv), so we see from the first structure equations
thatwi, = cosudv. Itis hard to miss the similarity this bears to the discussioef and Example 1

in Section 1. Now we havdwi, = —sinudu A dv = —w1 A w3, SO, indeed, the sphere has Gaussian
curvaturek = 1.
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Let’'s now compute the geodesic curvatigeof the latitude circle: = uo. We obtain a Darboux frame
by takinge;, = e; and&, = —e;. Now, w12 = —wy1 = wqz (this also follows from Lemma 3.3). Then
kg = w12(81) = wi2(€). Now note thatv;, = cosudv = cotuw,, SOkg = COtuy. V

To illustrate the power of the differential forms approach, we give a proof of the following result (see
Exercise 2.3.15).

Proposition 3.4. SupposeM has no umbilic points ankl, is constant. TheM is (a subset of) a tube
of radiusr = 1/|k;| about a regular curve.

Proof. Choose a principal moving frangg, e,. We havew;3 = kiw; andw,3 = k,w,. Differentiating
the first, since; is constant, we geb1> Awz3 = kiwi2 Aws, SOw12 A(ka—k1)wa = 0. Sincek, —ky # 0,
we infer thatw1, = Aw, for some scalar function. Now letg; = e, &, €& be the Frenet frame of the
e;-curve and apply Exercise 3. Sinag, = 0 andw;3 # 0 when restricted to amp;-curve, we infer that
cosf = 0 andf = +x/2 all along the curve. Thew,3; = tw; = 0 on thee;-curve, sor = 0 and the
curve is planar. But thenw; = w12 = w13 = tkiw1, SOk = |k is constant and the,-curves are
circles.

. 1
Now considefr = X + k—eg. Then
1

1 1 k
do =dX+ —de; = w161 + w268 + —(—k1wi1€1 — krwr8) = (1 — —2)0)262,

S0 o is constant along the; -curves andie # 0, which means that the image efis a regular curve, the
center of the tube, as desired

From the Gauss equation and Stokes’s Theorem, the Gauss-Bonnet formula follows immediately for an
oriented surfacéd/ with (piecewise smooth) boundady/ on which we can globally define a moving frame
That is, we can reprove the Local Gauss-Bonnet formula, Theorem 1.6, quite effortlessly.

Proof. We start with an arbitrary moving franmg, e, e; and take a Darboux fram®,€,,€; along
dM. We write€; = cosfe; + sinfe, andeé, = —sinfe; + cosfe, (wheref is smoothly chosen along
the smooth pieces @fM and the exterior angle; at P; gives the “jump” of6 as we cross?;). Then, by
Stokes’s Theorem and Lemma 3.3, we have

S P R R

(See Exercise 2.) O

EXERCISES 3.3

1. Prove Lemma 3.3.

2. Letey, e, e3 be the Darboux frame along a curee Show that as a-form one, wi> = kgwi. Use
this result to reprove the result of Exercise 3.1.7.

3. Supposeax is a curve lying in the surfacdf/. Lete;, e, e; be the Darboux frame along (i.e., a
moving frame for the surface witly tangent tax), and lete; = e;,€,, €3 be the Frenet frame. Then,
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*4,

*8.

10.

11.

12.

13.
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by analogy with Lemma 3.3, €; are obtained frone,, e; by rotating through some angte Show
that, asl-forms one, we have:

w12 = kwp = CO0SOwiz + Sinfwi 3
w13 =0 = —sinfwiy + cosbw;3

W3 = TW1] = wa3 + dO.

Use Exercise 3 to prove Meusnier's Theorem (Proposition 2.5 of Chapter 2).

Use Exercise 3 to prove that@ c M is a line of curvature and the osculating planeCofnakes a
constant angle with the tangent planeMt thenC is planar.

Use moving frames to redo Exercise 2.2.14. (Hint: Use the Codazzi equations to shaw that; =
dk ANwy =0.)

Use moving frames to redo Exercise 2.2.15.

Use moving frames to compute the Gaussian curvature of the torus, parametrized as in Example 1(c) of
Chapter 2.

The vectore; = v(1,0) ande, = v(0, 1) give a moving frame atu,v) € H. Setw; = du/v and
wy = dv/v.

a. Checkthatforany € T, ,)H, 01(V) = 1(V,e1) andwz (V) = I(V, &).

b. Computaw;, anddw;, and verify thatk = —1.

Use moving frames to redo
a. Exercise 3.1.8
b. Exercise 3.1.9

a. Use moving frames to reprove the result of Exercise 2.3.14.

b. Use moving frames to reprove the result of Exercise 2.4.13. That is, prove that if there are two
families of geodesics i that are everywhere orthogonal, th&his flat.

c. Suppose there are two families of geodesicsfinmaking a constant angke Prove or disprove:
M is flat.

Recall that locally any-form ¢ with d¢ = 0 can be written in the formp = df for some functionf'.

a. Prove that if a surfacé/ is flat, then locally we can find a moving franeg, e, on M so that
w12 = 0. (Hint: Start with an arbitrary moving frame.)

b. Deduce that ifM is flat, locally we can find a parametrizationof M with £ = G = 1 and
F = 0. (That s, locallyM is isometric to a plane.)

(The Backlund transformBupposeM and M are two surfaces ilR3 and f: M — M is a smooth
bijective function with the properties that
() theline fromP to f(P)is tangent taV at P and tangent td/ at f(P);
(i) the distance betweeR and f(P) is a constant, independent oP;
(i) the angle between(P) andn( f(P)) is a constan®, independent oP .
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Prove that both/ andM have constant curvatur€ = —(sin? 8)/r2. (Hints: Write P = f(P), and
E——

lete;, e, e3 (resp.€;, &, 8;) be moving frames aP (resp. P) with & = e in the direction ofP P.
Letx andX = fox be local parametrizations. How else arandX related?)

4. Calculus of Variations and Surfaces of Constant Mean Curvature

Every student of calculus is familiar with the necessary condition for a differentiable funttiBA —
R to have a local extreme point (minimum or maximumPatWe must havév f(P) = 0. Phrased slightly
differently, for every vectoW, the directional derivative
: P +eV)— f(P
Dus(p) = lim LEHEN =)
£ &

|
—

should vanish. Moreover, if we are given a constraint 8t = {x € R” : g1(X) = 0,g2(X) =
0,...,gx(X) = 0}, the method of Lagrange multipliers tells us that at a constrained extreme poust
must have

k
Vf(P)=> AiVgi(P)
i=1
for some scalard, ..., A;r. (There is also a nondegeneracy hypothesis herévbatP), ..., Vgi(P) be
linearly independent.)

Suppose we are given a regular parametrized sudade— R3 and want to find—without the benefit
of the analysis of Section 4 of Chapter 2—a geodesic flore= X(ug, vo) to Q@ = X(u1,v1). Among all
pathsa: [0, 1] — M with «(0) = P anda(1) = Q, we wish to find the shortest. That is, we want to choose
the patho(z) = x(u(t), v(¢)) so as taninimizethe integral

1 1
/0 loe’ (1) |t :/0 \/E(u(t),v(l))(u’(l))2 + 2F (u(), v ()" (1) + Gu(t), v(1)) (V' (1)) d1

subject to the constraints th@t(0), v(0)) = (ug, vo) and(u(1),v(1)) = (u1,v1), as indicated in Figure
4.1. Now we're doing a minimization problem in the space of@l)curves(u(¢), v(r)) with (1(0), v(0)) =

(up,vy)

FIGURE4.1

(ug,vo) and (u(1),v(1)) = (u1,v1). Even though we're now working in an infinite-dimensional setting,



108 CHAPTER3. SURFACES FURTHERTOPICS

we should not panic. In classical terminology, we hafer&tional F defined on the spack of ! curves
u:[0,1] - R3, i.e.,

1
%) Fo = [ feuo.wer.
0
For example, in the case of the arclength problem, we have
St @), v(@), @' (0),v'(1) =
\/ Eu(t), v(0)) (' (1))* + 2F (u(t), v()u'()v' (1) + G(u(r), v(1))(v' (1))

To say that a particular cureg” is a local extreme point (with fixed endpoints) of the functioRajiven
in () is to say that for anyariation &: [0, 1] — R? with £(0) = £(1) = 0, the directional derivative

F(u* +¢e§)— F(u*) i

Dg F(u*) = lim . = - F(U* + ¢§)

e=0

should vanish. This leads us to the

Theorem 4.1(Euler-Lagrange Equations)f u* is a local extreme point of the functionBlgiven above
in (%), then atu™ we have
aof d (of
u  dr (%) ’

evaluating these both at,u*(t),u*'(t)), forall0 <t < 1.

Proof. Let£:[0,1] — R2 be aC! curve with&(0) = £(1) = 0. Then, using the fact that we can pull
the derivative under the integral sign (see Exercise 1) and then the chain rule, we have

d
% o F(u + SE) d_
/ f(r, u*(t) + e€(1),u™' () + e&'(1))dt

f af

/0 (—(r UR(O.U™(0) - §(0) + 50 (LU0 U™ (0) - () ) di

/ @t u*(t) + e&(1),u* (1) + &' (t))dt

and so, integrating by parts, we have
0 d
-[(Zoso-2 (i) §0)dr + L5 0]]
0

() o

Now, applying Exercise 2, since this holds fif €' ¢ with £(0) = £(1) = 0, we infer that

of _d(of\_,
ou dr\ou) 7

as desired. O
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Of course, the Euler-Lagrange equations really give a system of differential equations:

of _d (of
%_E(W)
of _d (df
%_E(W)'

Example 1. Recall that for the unit sphere in the usual parametrization we Rave 1, F = 0, and
G = sin? u. To find the shortest path frog, vo) = (1o, vo) to the point(uy, vy) = (11, vo), we want to
minimize the functional

(%)

1
F(u,v) :/0 \/(u’(z))z + sir? u()(v'(1))2dt.

Assuming our critical patlu* is parametrized at constant speed, the equati#gie usv’(r) = const
andu’(¢) = sinu(t) cosu(t)v’(t)?. (Cf. Example 6(b) in Section 4 of Chapter 2.)V

We now come to two problems that interest us here: What is the surface of least area with a given
boundary curve? And what is the surface of least area containing a given volume? For this we must
consider parametrized surfaces and hence functionals defined on functions of two variables. In particular,
for functionsx: D — R3 defined on a given domaiB C R?, we consider

F(x) = // Xy X Xy ||dudv.
D

We seek a functiom™ so that, for all variationg: D — R3 with & =0o0n0D,

F(U* +e§)— FUu*) d
& de
f(¢)-f'(¢)

Now we compute: Recalling thaé,td; If(r)|| = ———— and settingx = x* + <&, we have

f)]
d _ 1 * * * *
Je 0||Xu XXv||—W((EuXXv + X5, X &) - (6, X X7))
e= u v
= (&, x Xy + X, x &) - n.

F@U* +¢§) = 0.
e=0

Dg F(U™) = lim
§ () e—0

Next we observe that
(B xxp)-n= (€ xxp)-n), —(Exx5,)-N—(ExX3)-Ny
O x &) -n = (0 x &) -n), — Oy X &) N —(x; x &) - Ny,
and so, adding these equations, we obtain
(B XXy + X5 x &) -n= ((E xx3)-n), + (0 x &) -n), — (€ xX5) Ny + (x5 x &) -Ny)
= ((& xxp) - n), — (& xx;)-n), — (( xX3) - My + (5 x &) - Ny)
= (Exxp)-n), —((E xx5)-n), —&-(Xy x Ny + Ny xX).
At the last step, we've used the identify x V) - W = (W x U) -V = (V x W) - U. The appropriate

way to integrate by parts in the two-dimensional setting is to apply Green’s Theorem, Theorem 2.6 of the
Appendix, and so we leP = (§ x x}) -nandQ = (§ x x};) - n and obtain

//D(’gu XXy + X5 x &,)-ndudv
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= //D ((@ xxy)-n), —((&xx;)-n), )dudv — //Dg (X5 x Ny + Ny x X5 )dudv
Qu Py

:/ (ExXx3)-ndu+ (& xx:)-ndv—// £+ (X5 x Ny + Ny x X3 )dudv.
aD s 5 D
Sinceé = 0onaD, the line integral vanishes. Using the equatiofg on p. 59, we find that} x n, =
a(xy x Xy) andn, x X = d(x;; x X3), so, at long last, we obtain

// Xy X Xy ||dudv = // (&, X X5 + X5 x &) -ndudv
e=0JYD D

= —// £ - (X5 x Ny + Ny x X5 )dudv
D

= —// (a+d)§- (X xx3)dudv = —// 2HE -ndA,
D D
sinceH = 3trSp.

We conclude from this, using a two-dimensional analogue of Exercise 2, the following

a4
de

Theorem 4.2. Among all (parametrized) surfaces with a given boundary curve, the one of least area is
minimal, i.e., hadd = 0.

This result, indeed, is the origin of the terminology.

Next, suppose we wish to characterize those closed surfaces (compact surfaces with no boundary) of
least area containing a given volurie To make a parametrized surface closed, we requirethab) = Xg
for all (u,v) € aD. But how do we express the volume constraint in termg?iThe answer comes from
the Divergence Theorem and is the three-dimensional analogue of the result of Exercise A.2.5: The volume
enclosed by the parametrized surfads given by

vol(V) = %//DxmdA.

Thus, the method of Lagrange multipliers suggests that for a surface of least area there must be al\constant
SO that// (2H —MA)&é-ndA = 0Ofor all variationsé with & = 0ondD. Once again, using a two-dimensional
D

analogue of Exercise 2, we see thaf — A = 0 and hencdd must be constant. (Also see Exercise 6.) We
conclude:

Theorem 4.3. Among all (parametrized) surfaces containing a fixed volume, the one of least area has
constant mean curvature.

In particular, a soap bubble should have constant mean curvature. A nontrivial theorem of Alexandrov,
analogous to Theorem 3.6 of Chapter 2, states that a smooth, compact surface of constant mean curvature
must be a sphere. So soap bubbles should be spheres. How do you explain “double bubbles™?

Example 2. If we ask which surfaces of revolution have constant mean curvdfyrehe statement of
Exercise 2.2.21a. leads us to the differential equation
h" 1

(1 + 1232 h(1 + W2)1/2

= 2H,.
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(Here the surface is obtained by rotating the graplt about the coordinate axis.) We can rewrite this
equation as follows:

—hh" 4 (1 +h/2)
(1 +h/2)3/2

+2Hoh =0

and, multiplying through by,

,—hh" + (1 + 1'?)

[
TEWILE +2Hohh' =0

h ! 1,
— 2Ho(=h*) =0
(\/1+h/2) - 0(2 )

(T) ﬁ —+ H0h2 = const

We now show that such functions have a wonderful geometric characterization, as suggested in Figure
4.2. Starting with an ellipse with semimajor axisand semiminor axi$, we consider the locus of one

FIGURE4.2

focus as we roll the ellipse along theaxis. By definition of an ellipse, we ha\HeITQ)H + ||@|| = 2a,

and by Exercise 7, we havey, = b? (see Figure 4.3). On the other hand, we deduce from Exercise 8
that@) is normal to the curve, and that, therefoye= ||ﬁé|| cosg. Since the “reflectivity” property

of the ellipse tells us that F, QP =~ ZF>,Q P>, we havey, = ||@|| cos¢. Since co® = dx/ds and

FIGURE4.3

ds/dx = /1 + (dy/dx)?, we have
b2

dx
y+ —=y+4+y, =2acC0Sp =2a—
y ds
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and so

dx 2ay
e 2— —_— 2: 2—— 2:
0=y 2ayds+b y 1+y/2+b 0.

SettingHy = —1/2a, we see that this matches the equatibnapove. V

#1.

42,

EXERCISES 3.4

! ad
Supposeg:[0,1] x (—1,1) — R is continuous and leG(e) = / g(t,e)dt. Prove that ifa—g is
0 &

1 3 1
continuous, theiw’(0) = / a—g(t,O)dz. (Hint: Consideri(e) = / / a—g(t,u)dwlu.)
0 de o Jo de

1
*a. Supposegf is a continuous function of®, 1] and/ f(@®)E(@)dt = 0 for all continuous functions

0
£ on|0, 1]. Prove thatf = 0. (Hint: Takef = f.)
1

b. Supposef is a continuous function off), 1] and/ f(@®)E(@)dt = 0 for all continuous functions
0
g on|0,1] with £(0) = £(1) = 0. Prove thatf = 0. (Hint: Take¢ = f for an appropriate
continuous functiony.)
c. Deduce the same result f@} functionst.
d. Deduce the same result for vector-valued functiossdé .

Use the Euler-Lagrange equations to show that the shortest path joining two points in the Euclidean
plane is a line segment.

b
Use the functionaF (u) = 2u(t)4/ 1 + (u/(t))?dt to determine the surface of revolution of least

area with two parallel circles (perhaps of different radii) as boundary. (Hint: You should end up with
the same differential equation as in Exercise 2.2.21.)

Prove the analogue of Theorem 4.3 for curves. That is, show that of all closed plane curves enclosing
a given area, the circle has the least perimeter. (Cf. Theorem 3.10 of Chapter 1. Hint: Start with

Exercise A.2.5. Show that the constrained Euler-Lagrange equations imply that the extremizing curve
has constant curvature. Proposition 2.2 of Chapter 1 will help.)

1
Interpreting the integra)[ f(t)g(t)dt as an irlmer product (dot produdt), g) on the vector space

0
of continuous functions of0, 1], prove that if/ f(t)g(t)dt = 0 for all continuous functiong with
1 0
/ g(t)dt = 0, then f must be constant. (Hint: Writ¢ = (£, 1)1 + £+, where(f+,1) = 0.)
0

Prove thepedal propertyof the ellipse: The product of the distances from the foci to the tangent line of
the ellipse at any point is a constant (in fact, the square of the semiminor axis).

The arclength-parametrized curags) rolls without slipping along thec-axis, starting at the point
a(0) = 0. A point F is fixed relative to the curve. Le#(s) be the curve that” traces out. As
indicated in Figure 4.4, lef(s) be the anglex’(s) makes with the positive-axis. Denote byRy =



§4. CALCULUS OF VARIATIONS AND SURFACES OFCONSTANT MEAN CURVATURE 113

FIGURE4.4

sind  cosf
Show thaB(s) = (5,0) + R_g(s) (F — a(s)).

cosf —sinf . . .
[ the matrix that gives rotation of the plane through artjle
a
b. Show thai’(s) - R_g(s)(F —a(s)) = 0. That is, asF” moves, instantaneously it rotates about the

contact point on the-axis. (Cf. Exercise A.1.4.)

9. Find the path followed by the focus of the parabpla= x?/2 as the parabola rolls along theaxis.
The focus is originally af0, 1/2). (Hint: See Example 2.)



APPENDIX

Review of Linear Algebra and Calculus

1. Linear Algebra Review

Recall that the sefvy,...,v,} of vectors inR” gives a basis for a subspageof R” if and only if
every vectowv € V can be writteruniquelyas a linear combinatiom = ¢1vy + --- + ¢ V. In particular,
V1, ...,V, Will form a basis forR” if and only if then x n matrix

| |
A=V Vo -+ Vy

is invertible, and are said to hmositively orientedf the determinant det is positive. In particular, given
two linearly independent vectorsw € R3, the seffv, w, v x w} always gives a positively oriented basis for

R3.

We sayey, ..., e € R" form anorthonormalset inR” if g; -; = O for all i # j and|g| = 1 for all
i =1,...,k. Then we have the following

Proposition 1.1. If {ey,...,e,} is an orthonormal set of vectors R, then they form a basis fd"

and, given any € R", we havev = i (V-g)g.
i=1

We say am x n matrix A4 is orthogonalif ATA = I. Itis easy to check that the column vectors of
A form an orthonormal basis f@®” (and the same for the row vectors). Moreover, from the basic formula
Ax-y = x- A"y we deduce that i¢;, . . ., g, form an orthonormal set of vectorsIkf" and A is an orthogonal
n X n matrix, thendey, ..., Ae, are likewise an orthonormal set of vectors.

An important issue for differential geometry is to identify the isometrie®Réf(although the same
argument will work in any dimension). Recall that @moemetryof R3 is a functionf: R3> — R3 so that for
anyx,y € R3, we have||f(x) — f(y)|| = ||x — y||. We now prove the

Theorem 1.2. Any isometryf of R3 can be written in the forrf(x) = Ax + ¢ for some orthogona x 3
matrix A and some vectar € R3.

Proof. Letf(0) = c, and replacd with the functionf — c. It too is an isometry (why?) and fixes the
origin. Then|[f(x)|| = |If(x) —f(0)|| = ||x — 0| = ||x||, so thatf preserves lengths of vectors. Using this
fact, we prove that(x) - f(y) = x - y for all x,y € R3. We have

If) =t = Ix=yl* = x—y) - (x—=y) = [X|* —2x-y + |lylI*;
on the other hand, in a similar fashion,

IF) =W = IFEIII* — 2f(x) - F(y) + IFW)IIZ = X[ = 2f00) - F(y) + lIylI.

114
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We conclude that(x) - f(y) = x -y, as desired.
We next prove that must be a linear function. L€k;, e, e;} be the standard orthonormal basis for
R3, and letf(ej) = v;, j = 1,2,3. It follows from what we've already proved thét,v,, v3} is also an

orthonormal basis. Given an arbitrary vectoe R3, write X = i x;g and f(x) = i y;Vj. Then it
follows from Proposition 1.1 that = =

yi=fX)-vi =x-6 = x;,
sof is in fact linear. The matrixd representing with respect to the standard basis has ag'itsolumn the
vectorv;. Therefore, by our earlier remarkd,is an orthogonal matrix, as requiredd

Indeed, recall that if": R” — R” is a linear map an® = {vi,...,V;} is a basis foilR”, then the
matrix for T with respect to the basiB is the matrix whosg ™ column consists of the coefficients oiv;)
with respect to the basiB. That is, it is the matrix

n
A= [aij], where T(Vj) = Zaijvi.
i=1

Recall that if4 is ann x n matrix (or 7:R"” — R” is a linear map), a nonzero vectotis called an
eigenvectoif Ax = AX (T (X) = AX, resp.) for some scalar, called the associatezigenvalue

Theorem 1.3. A symmetric2 x 2 matrix A = [Z b] (or symmetric linear maff: R> — R?) has
Cc
two real eigenvalues, and\,, and, provided.; # A,, the corresponding eigenvectors andv, are
orthogonal.
Proof. Consider the function

iR >R,  f(X) = AX-X = ax} + 2bx1xz + cx3.

By the maximum value theoreny has a minimum and a maximum subject to the constraipd) =
x% + x% = 1. Say these occur, respectivelyvatandv,. By the method of Lagrange multipliers, we infer
that there are scalafs so thatV f(v;) = A;Vg(v;), i = 1,2. By Exercise 5, this meansv; = A;v;, and
so the Lagrange multipliers are actually the associated eigenvalues. Now

A1(V1-V2) = AVy -Va =V - AV = A5(Vy - V2).
It follows that if A1 # A,, we must haver; - v, = 0, as desired. O

We recall that, in practice, we find the eigenvalues by solving for the roots ahmacteristic polyno-

mial p(t) = det(A —¢1). In the case of a symmetritx 2 matrix A = [Z b}, we obtain the polynomial

C
p(t) =t? — (a + c)t + (ac — b?), whose roots are

A =%((a+c)—\/(a—c)2+4b2) and Azzé((a—i-c)—i-\/(a—c)2+4b2).
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EXERCISES A.1

#1.  Suppose{v;,Vv,} gives a basis foiR2. Given vectorsx,y € R2, prove thatx = vy if and only if
X-Vi =Yy-V;,i =1,2.

*2. The geometric-arithmetic mean inequality states that

Vab < a4 -; b for positive numbera andb,
with equality holding if and only it: = b. Give a one-line proof using the Cauchy-Schwarz inequality:
[u-v| < ullllv] for vectorsu andv € R”,
with equality holding if and only if one is a scalar multiple of the other.
3. Letw,x,y,z € R3. Prove that
WxX)-(yx2z)=(W-y)(Xx-2) —(W-2)(X-y).

(Hint: Both sides are linear in each of the four variables, so it suffices to check the result on basis
vectors.)

#4. Supposel(t) is a differentiable family o8 x 3 orthogonal matrices. Prove thd{r)~' A’(z) is always
skew-symmetric.

5. IfA= [Z b} is a symmetriQ x 2 matrix, setf(x) = Ax-x and check thaV f(x) = 24x.
c

2. Calculus Review

Recall that a functionf: U — R defined on an open subsgt C R” is ek (k =0,1,2,...,00) if
all its partial derivatives of ordex k exist and are continuous dn. We will use the notationa; and f,
interchangeably, and similarly with higher order derivativgsz.— = i(%) is the same ag,,, and so
on. vou v \ du

One of the extremely important results for differential geometry is the following

5 . *>f _ Pf
Theorem 2.1. If f is aC~ function, then—— = or fuy = fou):
Judv  dvou

The same results apply to vector-valued functions, working with component functions separately.
If /:U — Ris C! we can form itsgradientby taking the vectoiV f = (fxl,fm, .. -,fx,,) of its
partial derivatives. One of the most fundamental formulas in differential calculus chée rule

Theorem 2.2. Supposef :R" — R ande: R — R” are differentiable. Thef ca)'(t) = V f(ee(2)) -
o (1).

In particular, ife(0) = P anda/(0) = V € R”, then(feoa)’(0) = V f(P)-V. This is somewhat
surprising, as the rate of change ofalonge at P depends only on the tangent vector and on nothing more
subtle about the curve.
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Proposition 2.3. Dy f(P) = V f(P)-V. Thus, the directional derivative is a linear functiorMof

Proof. If we takea(t) = P + tV, then by definition of the directional derivativd)y f(P) =
(fea)(0) =V f(P)-V. O

Another important consequence of the chain rule, essential throughout differential geometry, is the following

Proposition 2.4. SupposeS C R” is a subset with the property that any pair of pointsSofan be
joined by a@! curve. Then &' function f:S — R with V f = 0 everywhere is a constant function.

Proof. Fix P € S and letQ € S be arbitrary. Choose @' curvea with «(0) = P anda(1) = Q.
Then(fea) (t) = V f(a(t)) -o’(t) = 0 for all t. It is a consequence of the Mean Value Theorem in
introductory calculus that a functiog: [0, 1] — R that is continuous o1f0, 1] and has zero derivative
throughout the interval must be a constant. Therefg&) = (fea)(1) = (foa)(0) = f(P). It follows
that / must be constant ofi. O

We will also have plenty of occasion to use the vector version of the product rule:

Proposition 2.5. Supposé, g:R — R3 are differentiable. Then we have

f-9'@)=1f@)-900)+ft)-dt) and
(fxg) @) =1@)xg@) +fr) xd ().

Last, from vector integral calculus, we recall the analogue of the Fundamental Theorem of Calculus in
RZ:

Theorem 2.6(Green’s Theorem)Let R C R? be a region, and IeiR denote its boundary curve,
oriented counterclockwise (i.e., so that the region is to its “left”’). Supposand Q areC! functions

throughoutR. Then
P
/ P(u,v)du + Q(u,v)dv = // — — — ) dudv.
IR ou  Jv

d+

A

OR

FIGURE2.1

Proof. We give the proof here just for the case whétes a rectangle. Tak® = [a,b] x [c,d], as
shown in Figure 2.1. Now we merely calculate, using the Fundamental Theorem of Calculus appropriately:

[ 2w [ ([ o ([ )
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d b
=/ (Q(b,v)—Q(a,v))dv—/ (P(u,d)—P(u,c))du

=prw¢mu+LdQ@mmv—me%dwu—Ldeva

:/’Pmmmu+Qmeu
OR

as required. O

EXERCISES A.2

#1. Supposd: (a,b) — R" is @' and nowhere zero. Prove thi|f|| is constant if and only if' (r) =
A(t)f(z) for some continuous scalar functidn (Hint: Setg = f/||f|| and differentiate. Why must

g-9=07)
2. Supposex: (a,b) — R3 is twice-differentiable and. is a nowhere-zero twice differentiable scalar

function. Prove that, «’, anda” are everywhere linearly independent if and only.éf, (Ae)’, and
(Ae)”” are everywhere linearly independent.

3. Letf,g:R — R3 be@! vector functions with the property th&i0) andy (0) are linearly independent.
Suppose

f'(t) = a(Of(t) + b()g(1)
g'(t) = cOf() —a(®)g)

for some continuous functions b, andc. Prove that the parallelogram spanned @y andg(z) lies in
a fixed plane and has constant area.

#+4.  Prove that for any continuous vector-valued functiofa, ] — R3, we have
b
/ f(¢)dt
a

#5. LetR C R2 be aregion. Prove that

1
ared R) :/ udv = —/ vdu = —/ —vdu + udv.
AR R 2 Jor

b
< / ().

3. Differential Equations

Theorem 3.1 (Fundamental Theorem of ODE'spupposey C R” is open andl C R is an open
interval containingd. Supposey € U. If f:U x I — R”" is continuous and Lipschitz ir (this means
that there is a constafit so that||f(x,t) —f(y,?)|| < C|x—y]| forallx,y € U and allt € 1), then the
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differential equation

dx
I =f(x,1), x(0) = Xg

has a unique solution = X(t, Xq) defined for allt in some interval’ C I. Moreover, Iff is Gk, thenx is
¥ as a function oboth: and the initial conditiory (defined fort in some interval andy in some open
set).

Of special interest to us will be linear differential equations.

Theorem 3.2. Supposed(t) is a continuous x n matrix function on an interval. Then the differential

equation

dx

— = A@)X(), Xo = Xog,
= AOX0). X0 =%
has a unique solution on the entire original interkal

For proofs of these, and related, theorems in differential equations, we refer the reader to any standard
differential equations text (e.g., Hirsch-Smale or Birkhoff-Rota).

Theorem 3.3. Letk > 1. Given twoC¥ vector fieldsX andY that are linearly independent on a
neighborhood/ of 0 € R?, locally we can choos€* coordinatesu,v) onU’ C U so thatX is tangent to
theu-curves (i.e., the curvas = cons) andY is tangent to the-curves (i.e., the curvas = cons}.

Proof. We make a linear change of coordinates soX@ andY (0) are the unit standard basis vectors.
Let x(z, Xo) be the solution of the differential equatiatx/dt = X, x(0) = X, given by Theorem 3.1. On
a neighborhood o®, each poinfx, y) can be written as

(x.y) = X(z.(0,v))

for some unique andv, as illustrated in Figure 3.1. If we define the functiffn, v) = x(z, (0,v)) =

coordinates (u,v)

x(t,(0,v))

X0  [wo

FIGURE3.1

(x(t,v), y(t,v)), we note that; = X(f(¢, v)) andf,(0,0) = (0, 1), so the derivative matrix>f(0, 0) is the
identity matrix. It follows from the Inverse Function Theorem that (locally) we can solvé fo) as ack
function of (x, y). Note that the level curves ofhave tangent vectof, as desired.

Now we repeat this procedure with the vector fi¥d Let y(s, yo) be the solution of the differential
equationdy/ds =Y and write

(x.y) = y(s. (u,0))
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for some unique andu. We similarly obtain(s, u) locally as aC* function of (x, y). We claim that(u, v)

give the desired coordinates. We only need to check that on a suitable neighborhood of the origin they
are independent; but from our earlier discussion we have- 0, v, = 1 at the origin, and, analogously,

ux = 1 andu, = 0, as well. Thus, the derivative matrix ¢f, v) is the identity at the origin and the
functions therefore give a local parametrizatioril

EXERCISES A.3

1. SupposeM(s) is a differentiable3 x 3 matrix function ofs, K(s) is a skew-symmetri@ x 3 matrix
function ofs, and
M'(s) = M(s)K(s), M(0)=O0.
Show thatM (s) = O for all s by showing that the trace ¢/ ™M)’ (s) is identically0.

2. (Gronwall inequalityand consequences)
a. Suppose':[a,b] — Ris differentiable, nonnegative, anfia) = ¢ > 0. Suppose: [a,b] — R
is continuous and’(¢) < g(¢) f(¢) for all t. Prove that

t
f(@® §cexp(/ g(u)du) forall ¢.

b. Conclude that iff'(a) = 0, then f(z) = 0 for all ¢.

c. Suppose now:[a,b] — R” is a differentiable vector function, and(¢) is a continuous: x n
matrix function forz € [a,b), andV'(tr) = M(t)v(t). Apply the result of part b to conclude that if
v(a) = 0, thenv(z) = Ofor all . Deduce uniqueness of solutionsliteear first order differential
equations for vector functions. (Hint: Let(z) = ||v(¢)||?> andg(r) = 2n max{|m;; (¢)|}.)

d. Use part ¢ to deduce uniqueness of solutions to linBasrder differential equations. (Hint: Intro-
duce new variables corresponding to higher derivatives.)
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1.2.25

ANSWERS TO SELECTED EXERCISES

42
«() = (52 T32):

We parametrize the curve by(r) = (¢, f(t)), a < t < b, and so lengttw) =
i el de = [ T+ () dr.
B(s) = (A(Vs2+4+5), L(Vs2+4—5),V2In((V52 + 4+ 5)/2)).

S S
C K= m=s
a.T=%(m,—m,\/§),K=N—+ m1N=1/\/§(V1_S’V1+S’O)’B:
1 S B — 1 ST —
2CVTHs V=5 VD)0 = sisie T = s VI+ 2 D)k = 1 =
2 _ 1 R S _
1/2(1+t)’N_W(l’o’_t)’B_ﬁW( t, V1 +12,-1)

x = 1/sinht (which we see, once again, is the absolute value of the slope)

B =(TxN)Y=T'xN+TxN =®N)xN+Tx(—«T+ tB) = (T xB) = t(—N),
as required.

b. If all the osculating planes pass through the origin, themetare scalar functions and

w so that0 = « + AT + uN. Differentiating and using the Frenet formulas, we obtain
0 =T+ «kAN+ AT + u(—«T + tB) + w'N; collecting terms, we have = (1 + 1’ —
k)T + (kA + /)N + prB. Since{T,N, B} is a basis foiR?, we infer, in particular, that
ut = 0. (We could also just have taken the dot product of the entipression withB.)
u(s) = 0 leads to a contradiction, so we must have- 0 and so the curve is planar.

We haver’ x a” = kv3B, soa’ xa” = (o' xa”) = (kv3B) = (kv3)'B+ (kv3)(—7UN),
so (e’ x a”)-a” = —k?tv®. Thereforer = o - (¢” x &)/ (k*v®), and inserting the
formula of Proposition 2.2 gives the result.

a. Consider the unit norma; ; to the plane througl? = 0, O = «(s), andR = «(?).
Choosing coordinates so that0) = (1,0,0), N(0) = (0, 1,0), andB(0) = (0,0, 1), we
apply Proposition 2.6 to obtain

als) Xa(t) =

St(s —1t
g(—l(g‘fosl+...,ZKQT()(S—I-I)—|—...,—6K0+2K6(S+l‘)—l(3.¥l+...) ,

a(s) xalt)
- -
llee(s) x ()]
normalA is the osculating plane.

S0A;; = A = (0,0,—1) ass,t — 0. Thus, the plane through with

121
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134

213
214
215

217

218

2.1.10
2.1.15
221

2.2.3

225

SELECTED ANSWERS

a. cont. Alternatively, let the equation of the plane through Q, andR beA;; -x = 0
(where we choosé\; to vary continuously with lengtl). We want to determinéd =
limg,;—o0As,:. For fixeds andz, consider the functio ; (u) = As s -a(u). ThenF;;(0) =
Fs:(s) = Fs+(t) = 0, so, by the mean value theorem, thereirandé; so thath/,t(gl) =
Fj (&) = 0, hencen so thatF;(n) = 0. Now F],(0) = Ay, - T(0) and F};(0) =
A - koN(0). Since§; — 0 andn — 0 ass,t — 0, we obtainA - T(0) = A - N(0) = 0, so
A = £B(0), as desired.

Let L = length(C). Then by Theorem 3.5 we hager = fOLK(s) ds < fOL cds = cL, so
L >2m/c.

aE=a*F=0G=da?sirfu;d. E=G =da%cosifu, F=0
a. 47%ab

Say all the normal lines pass through the origin. Then theeefunction) so thatx = An.
Differentiating, we havex, = An, + A,n andx, = An, + A,n. Dotting with n, we
get0 = A, = A,. Therefore A is a constant and sfx|| = const. Alternatively, from the
statemenk = An we proceed as follows. Sincex,, = n-x, = 0, we havex-x,, = X-X, = 0.
Therefore,(x - X),, = (Xx-X), = 0, so||x||? is constant.

Forx to be conformal, we must haveé = G andF = 0; for it to preserve area we must have
1=+EG-F2,s0E =G = 1andF = 0, which characterizes a local isometry with the
plane. The converse is immediate.

We check thatz = G = 4/(1 + u? + v?)? and F = 0, so the result follows from Exercise
6.

b. One of these isx(u, v) = (cosu + v Sinu, Sinu — v cosu, v).
a. If acosh(1/a) = R, the area iQw (a + RV R? —a?).

If u- andv-curves are lines of curvature, théh = 0 (because principal directions are or-
thogonal away from umbilic points) and = Sp(X,) - Xy = k1Xy - X, = 0. Moreover, if
Sp(Xy) = k1%, andSp (Xy) = kaXy, We dot withx,, andx,, respectively, to obtaih = Ek
andn = Gk,. Conversely, settingp (x,) = axy, + bXy, we infer that if F = m = 0, then
0=Sp(Xy)-Xy = Fa+ Gb = Gb, and sab = 0. Thereforex, (and, similarly,x,) is an
eigenvector ofSp.

b. £ = b,m = 0, n = cosu(a + bcosu), Sp = o ’ ’
0 cosu/(a + bcosu)
H = 3(; + spes) K = saipeomyy & £ = —am =0n =a Sp =
—(1/a) secit u 0 VH=0,K=—(1/a)?secf u.
0 (1/a)sectt u

We know from Example 1 of Chapter 1, Section 2 that the pridaijermal of the helix points
along the ruling and is therefore orthogonalntoAs we move along a rulingy twists in a
plane orthogonal to the ruling, so its directional deriatin the direction of the ruling is
orthogonal to the ruling.
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E =tanlfu, F =0,G = seclf u, —¢ = sechutanhu = n,m =0
d. T, =Ty = ffw/fw), Ty, = —f()f'(u), all othersD.

kg = Cotup; we can also deduce this from Figure 3.1, as the curvaturtove®N =
(1/ sinug)N has tangential component(1/ sinug) coSugX,, = cotug(n x T).

Only circles. By Exercise 2 such a curve will also have camstarvature, and by Meusnier’'s
Formula, Proposition 2.5, the anglebetweenN andn = « is constant. Differentiating
a - N = cos¢ = const yieldsr(« - B) = 0. Eithert = 0, in which case the curve is planar,
or elsea - B = 0, in which casex = +N,sot = N'-B = +a’-B = +T -B = 0. (In the
latter case, the curve is a great circle.)

a. Obviously, the meridians are geodesics and the centrdécire= rq is the only parallel
that is a geodesic. Observe that if we have some other geptlesinr cosy = ¢ ande < ryp.

The geodesic withr cos¢ = ¢ will cross the central circle and then either approach one of
the parallels: = ¢ asymptotically or hit one of the parallets= ¢ tangentially and bounce
back and forth between those two parallels. In either eveera) a geodesic is bounded. (In
fact, if a geodesic approaches a parallel asymptoticaift, parallelmust be a geodesic; see
Exercise 27.)

The geodesics are of the form cdsh+ (v + ¢1)? = c% for constants:; andc,.

a. 2w sinug

a. yes, yesbh. yes, yescg. yes, no.

b. The semicircle centered @2, 0) of radius+/5; d(P, Q) = In ((3 + v/5)/2) ~ 0.962.
kg = COthR

We havex, = ll(e1,e1) = —des(e))-e; = wiz(€r). Sincees = sind&, + cosHes, the cal-
culations of Exercise 3 show that; = sinfw;, + cosfw13, SOw13(€1) = Sinfwiz(e1) =
k sinf. Hered is the angle betweess and€s, so this agrees with our previous result.

We havew; = bdu andw, = (a + bcosu)dv, SOwip, = —Sinudv anddwi, =

cosu du A d cosu cosu
— U au v=—|—-—— -
b(a + b cosu) b(a + b cosu)

a. Takingé = f gives usfo1 f(t)?dt =0. Sincef(t)> > 0forall ¢, if f(t) # 0, we have
an interval[to — 8, to + 8] on which £(¢)?> > f(t9)?/2, and sofo1 f()2dt > f(tg)?*s > 0.

)a)1 AWy, SOK =

y = %COS?‘(2x)

Considerz = x —y. Then we know thaz-v; = 0,i = 1,2. Since{vy,V,} is a basis
for R2, there are scalars andb so thatz = av; + bv,. Thenz-z = z- (avy + bvy) =
a(z-vy) + b(z-v,) =0,s0z = 0, as desired.

Hint: Takeu = (/a, v/b) andv = (v/b, Ja).

Letv = [?f(1) dt. Note that the result is obvious\f= 0. We have|v||? = v- [7 () dr =
[Py -f@yde < [PIVIF@) I de = VIl 2 [f@)]l dt (using the Cauchy-Schwarz inequality
u-v < |jull|v]), so, ifv # 0, we have|v| < fab If(r)| dt, as needed.



angle excess, 83

arclength, 6

asymptotic curve, 48, 51, 55
asymptotic direction, 48, 53, 56

Backlund, 106
Bertrand mates, 21
binormal vector, 11
Bishop frame, 32

ek, 1,35, 116
catenary, 5
catenoid, 43, 66
Cauchy-Schwarz inequality, 116
chain rule, 116
characteristic polynomial, 115
Christoffel symbols, 57
Codazzi equations, 59, 63, 104
compact, 61
cone angle, 90
conformal, 40
connection form, 104
convex, 28
covariant constant, 67
covariant derivative, 67
Crofton’s formula, 25, 33
cross ratio, 99
cubic

cuspidal, 2

nodal, 2

twisted, 3
curvature, 11
curve, simple closed, 26
cycloid, 3
cylindrical projection, 42

Darboux frame, 70, 103, 105
developablesee ruled surface, developable
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directrix, 38
Dupin indicatrix, 56

eigenvalue, 115
eigenvector, 115
elliptic point, 50

Euler characteristic, 85
exterior angle, 33, 83

first fundamental form, 39

flat, 49, 60, 61, 65, 77, 84, 90, 104
Foucault pendulum, 69

Frenet formulas, 11

Frenet frame, 11

functional, 108

Gauss equation, 60, 63, 104
Gauss map, 24, 44
Gauss-Bonnet formula, 83, 86, 96, 105
Gauss-Bonnet Theorem, 95
global, 86
local, 83
Gaussian curvature, 49, 51, 53, 57, 60, 82, 104
constant, 62, 92
generalized helix, 15
geodesic, 70
geodesic curvature, 70
globally isometric, 74
gradient, 116
Gronwall inequality, 120

h, 93

H, 49

helicoid, 35, 48, 55, 66

helix, 3

holonomy, 79, 82

hyperbolic plane, 91
Klein-Beltrami model, 101
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Poincaré model, 100 profile curve, 38
hyperbolic point, 50 pseudosphere, 51
inversion, 99 rectifying plane, 17
involute, 19 reflection, 98
isometry, 114 regular, 1
regular parametrization, 35
K, 49 rotation index, 27
knot, 26 developable, 42, 61, 65, 76
. ling, 38
Laplacian, 64 ruing
line of curvature, 47 second fundamental form, 46, 53
linear fractional transformation, 94 shape operator, 45, 53
locally isometric, 39 smooth, 1, 35

spherical coordinates, 37
stereographic projection, 37
support line, 31

surface, 35

surface area, 41

surface of revolution, 37
symmetric, 45

mean curvature, 49

meridian, 38, 52

metric, 74

Meusnier’s Formula, 51

minimal surface, 49, 55, 64, 110
moving frame, 101

normal curvature, 51
normal field, 32
normal plane, 17

tangent indicatrix, 24
tangent plane, 38
Theorema Egregium, 60, 104

oriented, 85 torsion, 11

orthogonal, 114 torus, 36

orthonormal, 114 total cu_rvature, 24, 88
total twist, 32

osculating circle, 22
osculating plane, 17, 22
osculating sphere, 22

tractrix, 5, 13
triply orthogonal system, 55
Tschebyschev net, 42
parabolic point, 50 twist, 32
parallel, 38, 52, 67, 75, 95
parallel translate, 68
parametrization

regular, 1, 35
parametrized by arclength, 7
parametrized curve, 1

u-, v-curves, 35
ultraparallels, 95
umbilic, 50

unit normal, 39

unit tangent vector, 11

pedal property, 112 variation, 108
planar point, 50 vector field, 66
Pomgare d|§k, 100 velocity, 1
positively oriented, 114 vertex, 29
principal curvatures, 47

principal directions, 47, 53 Zone, 41

principal normal vector, 11



