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3. Outline.

Integral Geometry, known in applied circles as Geometric Probability, is
somewhat of a mathematical antique (and therefore it is a favorite of
mine!) From it developed many modern topics: geometric measure
theory, stereometry, tomography, characteristic classes. . .

1 Integral geometry examples:

Buffon’s needle problem.
Firery’s dice problem

2 Kinematic measure.

3 Poincaré’s Formula for average number of intersections of curves.

4 Cauchy’s Formula for the average projected length.

5 Crofton’s Formula for the average chord length.

6 Santaló’s & Blaschke’s Formuls for the averages over the of the
intesection of two domains.

7 Application to the Isoperimetric Inequality.



4. Integral Geometry. First Example.

Theorem (Buffon’s Needle Problem [1733])

Parallel lines on a wooden floor are a distance d apart from each other.
A needle of length ` (` < d) is randomly dropped onto the floor. Then
the probability that the needle will touch one of the lines is

P =
2`

πd
.

Figure: Buffon’s Needle is randomly dropped



5. Integral Geometry. Second Example.

Theorem (Firey’s Colliding Dice Problem [1974])

Suppose Ω1 and Ω2 are disjoint unit cubes in R3. In a random collision,
the probablity that the cubes collide edge-to-edge slightly exceeds the
probability that the cubes collide corner-to-face. Indeed,

0.54 ∼= P(collide edge-to-edge) > P(collide corner-to-face.) ∼= 0.46.

Figure: Almost all random cube collisions are edge-to-edge or corner-to-face.



6. Coordinates of a line.

An unoriented line in the plane is determined by two numbers, p the
distance to the origin and θ, the direction to the closest point.
The variable range is 0 ≤ p and 0 ≤ θ < 2π.
Equivalently, we may take the range −∞ < p̃ <∞ and 0 ≤ η < π.

Figure: (p, θ) coordinates for the line L.

The equation of the line L(p, θ) in Cartesian coordinates is

cos(θ)x + sin(θ)y = p (1)



7. Rigid motions of the Euclidean Plane.

A rigid motion M of a set of points is given by a rotation by an angle α
followed by a translation by the vector (x0, y0). Thus(

x ′

y ′

)
= M

(
x
y

)
=

(
x0

y0

)
+

(
cosα − sinα
sinα cosα

)(
x
y

)
Thus the inverse motion is therefore given by(

x
y

)
= M−1

(
x ′

y ′

)
=

(
cosα sinα
− sinα cosα

)(
x ′ − x0

y ′ − y0

)
(2)

The mobile line L(p, θ) may be thought of as moving the fixed line
L(0, 0) by the translation (x , y) 7→ (x + p, y) followed by the rotation
about the origin by angle θ.

The first task is to find a measure on a set of lines that is invariant under
rigid motions. This measure will be called KINEMATIC MEASURE.



8. Kinematic measure.

The kinematic measure for lines in (p, θ) coordinates is given by

dK = dp ∧ dθ.

To check that this measure is invariant under rigid motions, let us first
determine how (p, θ) in the equation of the line (1) is changed by a rigid
motion M. We express (x , y) in terms of (x ′, y ′) using (2)

p = cos(θ)x + sin(θ)y

= cos(θ)
[
cos(α)(x ′ − x0) + sin(α)(y ′ − y0)

]
+ sin(θ)

[
− sin(α)(x ′ − x0) + cos(α)(y ′ − y0)

]
= [cos θ cosα− sin θ sinα] (x ′ − x0)

+ [cos θ sinα+ sin θ cosα] (y ′ − y0)

= cos(θ + α)(x ′ − x0) + sin(θ + α)(y ′ − y0)

or the equation of the new line L′ becomes

p + cos(θ + α)x0 + sin(θ + α)y0 = cos(θ + α)x ′ + sin(θ + α)y ′.



9. Kinematic measure is invariant under rigid motion.

Thus we read off the (p′, θ′) coordinates of the line L′ = M(L).

p′ = p + cos(θ + α)x0 + sin(θ + α)y0

θ′ = θ + α.

Then the Jacobian formula for the change in measure is

dp′ ∧ dθ′ = |J| dp ∧ dθ

where

J =
∂(p′, θ′)

∂(p, θ)
=

∣∣∣∣∣∣∣∣∣∣
∂p′

∂p

∂p′

∂θ

∂θ′

∂p

∂θ′

∂θ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣1 ∗
0 1

∣∣∣∣ = 1.

Thus we have shown that the kinematic measure is invariant under rigid
motions.



10. Differential forms version of the same computation.

We view (p′, θ′) as function (p, θ). The differentials are thus

dp′ = dp +
{
−sin(θ + α)x0 + cos(θ + α)y0

}
dθ,

dθ′ = dθ.

Recall that wedge is a skew product so that dp ∧ dθ = −dθ ∧ dp and
dθ ∧ dθ = 0. Hence

dp′ ∧ dθ′ =
(
dp +

{
−sin(θ + α)x0 + cos(θ + α)y0

}
dθ
)
∧ dθ

= dp ∧ dθ.



11. The measure of lines that meet a curve.

Let C be a piecewise C1 curve or network (a union of C1 curves.) Given a
line L in the plane, let n(L ∩ C ) be the number of intersection points. If
C contains a linear segment and if L agrees with that segment,
n(C ∩ L) = ∞. For any such C , however, the set of lines for which
n = ∞ has dK -measure zero.

Figure: Henri Poincaré
1854–1912

Theorem (Poincaré Formula for lines [1896])

Let C be a piecewise C1 curve in the plane.
Then the measure of unoriented lines
meeting C, counted with multiplicity, is
given by

2 L(C ) =

∫
{L:L∩C 6=∅}

n(C ∩ L) dK (L).



12. Key idea in IG: integtrate over a set S in two different coordinates.

For simplicity we assume C is a C1 curve Z (s) =
(
x(s), y(s)

)
,

parameterized by arclength. Thus there are x(s), y(s) ∈ C1[0, s0] such
that the tangent vector Ż = (ẋ , ẏ) satisfies |Ż | = 1. By adding the
formulas for C1 curves gives the formula for integrating a piecewise C1

curve.

Let us consider a flag which is the set of pairs (L,Z ) where L is a line in
the plane and Z ∈ L is a point. The set of lines and corresponding points
that touch C gives the subset of the flag

S = {(L,Z ); L ∩ C 6= ∅, Z ∈ L ∩ C}.

The line is determined by the coordinates (p, θ) and the point Z ∈ L by
an arclength coordinate q along L from the foot-point (p cos θ, p sin θ).∫

{L:L∩C 6=∅}

n dK =

∫
{L:L∩C 6=∅}

( ∑
Z∈L∩C

1

)
dK (3)



13. Compute the integral of S in different coordinates.

On the other hand, the set S can be determined by the point
(x , y) = Z ∈ C first and then L can be any unoriented line through Z of
angle 0 ≤ η < π (positive and negative orientations give the same line).
Thus we may replace (p, θ) by the coordinates (s, η). Using

p̃ = x(s) cos η + y(s) sin η.

(p̃, η) ∈ (−∞,∞)× [0, π) are same lines as (p, θ) ∈ [0,∞)× [0, 2π). So

dp̃ =
{
ẋ(s) cos η + ẏ(s) sin η

}
ds +

{
−x(s) sin η + y(s) cos η

}
dη.

Changing to (s, η), using tangent direction (ẋ , ẏ) = (cosφ(s), sinφ(s)),

dp̃ dη =
∣∣∣
∣∣∣∣∣∣∣∣∣
∂p̃

∂s

∂p̃

∂η

∂η

∂s

∂η

∂η

∣∣∣∣∣∣∣∣∣
∣∣∣ds dη =

∣∣∣
∣∣∣∣∣∣
cosφ cos η + sinφ sin η ∗

0 1

∣∣∣∣∣∣
∣∣∣ ds dη

= | cos(φ(s)− η)|ds dη.



14. Finish the proof of Poincaré’s Formula.

Using Fubini’s theorem (slicing formula), we may reverse the order of
integtation in (3) over the set S,∫

{L:L∩C 6=∅}

(∑
Z∈L

1

)
dK =

∫
{Z :Z∈C}

∫
{L:Z∈L}

dp̃ dη

=

s0∫
0

π∫
0

| cos(φ(s)− η)|dη ds

= 2

∫
C

ds

= 2L(C ).



15. Convex sets. First geometric probability example.

A nonempty set Ω ⊂ R2 is convex if for every pair of points P,Q ∈ Ω,
the line segment PQ ⊂ Ω. The integral geometric formulas hold for
convex sets. Since n(L ∩ ∂Ω) is either zero or two for dK -almost all L,
the measure of unoriented lines that meet the a convex set is given by

L(∂Ω) =

∫
{L:L∩Ω 6=∅}

dK .

The conditional probability of an event A given the event B is defined to
be P(A|B) = P(A∩B)

P(B) .

Theorem (Sylvester’s Problem [1889] )

Let ω ⊂ Ω be two bounded convex sets in the plane. Then the
probability that a random line meets ω given that it meets Ω is

P =
L(∂ω)

L(∂Ω)
.



16. Another application to Geometric Probability.

Corollary

Let C be a piecewise C1 curve contained in a compact convex set Ω. Of
all random lines that meet Ω, the expected number of intersections with
with C is

E(n) =
2 L(C )

L(∂Ω)
. (4)

Hence, there are lines that cut C in at least 2 L(C )/ L(∂Ω) points.

Proof. Since Ω is convex, E(n) =

∫
{L:L∩C 6=∅} n dK∫
{L:L∩Ω 6=∅} dK

=
2 L(C )

L(∂Ω)
.

The maximum of n exceeds the average.

Figure: Average number of intersections L ∩ C of a line L meeting Ω.



17. Support function and width.

Figure: Width and support function of convex Ω in θ direction.

For θ ∈ [0, 2π), the support function, h(θ), is the largest p such that
L(p, θ) ∩ Ω 6= ∅. The width is w(θ) = h(θ) + h(θ + π).



18. Another corollary: Mean projected width or Quermassintegral.

Figure: Augustin Louis Cauchy
1789–1857

Theorem (Cauchy’s Formula [1841])

Let Ω be a bounded convex domain. Then

L(∂Ω) =

∫ 2π

0
h(θ) dθ =

∫ π

0
w(θ) dθ. (5)

L(∂Ω) =

∫
{L:L∩Ω 6=∅}

dK =

∫ 2π

0

∫ h(θ)

0
dp dθ

=

∫ 2π

0
h(θ) dθ =

∫ π

0
h(θ) + h(θ + π) dθ

=

∫ π

0
w(θ) dθ.



19. Area in terms of support function.

Theorem

Suppose Ω is a compact, convex
domain with a C2 boundary. Then

A(Ω) =
1

2

2π∫
0

h ds =
1

2

2π∫
0

h(h+ḧ) dθ.

(6)

Write Z (θ) for the point
L(h(θ), θ) ∩ ∂Ω. The outer normal
is n(θ) = (cos θ, sin θ).

Z (θ) • n(θ) = h(θ)
Since ṅ = (− sin θ, cos θ), and Ż is
tangent, ḣ = ṅ • Z + n • Ż = ṅ • Z .
Thus Z = hn + ḣṅ. Hence,
Ż = ḣn + hṅ + ḧṅ− ḣn = (h + ḧ)ṅ.

Figure: Area on polar coordinates.

Thus
ds

dθ
= h + ḧ so A(Ω) =

∫
Ω

dA

=
1

2

2π∫
0

h ds =
1

2

2π∫
0

h(h + ḧ) dθ.



20. Buffon’s Needle Problem Solution.

Figure: (p, θ) coordinates for the closest crack L.

Fix needle N, a line segment of length ` centered at origin. Move floor.
` < d implies only the cracks closest to the origin could touch the needle.

So we consider crack lines L so that dist(L, 0) ≤ d

2
iff C ∩ L 6= ∅, where

C the circle about the origin with radius
d

2
.



21. Buffon’s Needle Problem Solution-.

Note that if L ∩ N 6= ∅ then n(L ∩ N) = 1. The probability of needle
hitting a crack is

P =

∫
{L:L∩N 6=∅} n(L ∩ N) dK (L)∫

{L:L∩C 6=∅} dK (L)
=

2 L(N)

L(C )
=

2`

2π · d
2

=
2`

πd
.

An experimental determination of π.

π =
2`

Pd
≈ 2`

d
· n

x
,

where x is the number of times needle touches crack in n trials.
Wolf, in Zurich (1850), tossed 5000 needles and found π ≈ 3.1596.
A Scotsman, Smith (1855), repeated with n = 3204 and found
π ≈ 3.1553.



22. Crofton’s Formula.

Figure: Morgan William
Crofton 1826–1915.

Theorem (Crofton’s Formula [1868])

Let D ⊂ R2 be a domain with compact
closure, L ⊂ R2 a random line and
σ1(L ∩ D) be the length (one-dimensional
measure). Then

π A(D) =

∫
{L:L∩D 6=∅}

σ1(L ∩ D) dK (L).

Let the subset of the flag be
S = {(L,Z ) : L ∩ D 6= ∅, Z ∈ L ∩ D}.
A point in S is given by coordinates (p, θ)
describing the line and q, arclength in L
from the foot point.



23. Proof of Crofton’s Formula.

Denote the right side by I. By extending −∞ < p̃ <∞, we
double-count the lines.

I =

∫
{L:L∩D 6=∅}

σ1(L ∩ D) dK (L)

=

∫
{L:L∩D 6=∅}

(∫
D∩L

dq

)
dp dθ

=

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
χD∩L(q) dq dp dθ

=
1

2

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
χD∩L(q) dq dp̃ dθ

where χD∩L is the characteristic function:

χD∩L(q) =

{
1, if q ∈ D ∩ L;

0, if q /∈ D ∩ L.



24. Finish the proof of Crofton’s Formula.

Observe that for the line L(p̃, θ) we have χD∩L(q) = 1 if and only if the
point in the plane corresponding to (p̃, q) lies in D, namely

(x , y) = p̃(cos θ, sin θ) + q(− sin θ, cos θ)

= (p̃ cos θ − q sin θ, p̃ sin θ + q cos θ) ∈ D

thus
χL(p̃,θ)∩D(q) = χD(x , y).

The change of variables to (x , y) is just rotation by angle θ. Thus

dx ∧ dy =
[
cos(θ)dp̃ − sin(θ)dq

]
∧
[
sin(θ)dp̃ + cos(θ)dq

]
= dp̃ ∧ dq.



25. Finish the proof of Crofton’s Formula-.

Now we think of S another way. First pick Z ∈ D and then L is any line
through Z .

I =
1

2

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
χD∩L(q) dq dp̃ dθ

=
1

2

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
χD(x , y) dx dy dθ

=
1

2

∫ 2π

0
A(D) dθ

= π A(D).



26. Application to Geometric Probability

Figure: Two random lines that meet Ω

Corollary (Crofton [1885])

Let Ω be a bounded convex domain
in the plane. Then the probability
that two random lines intersect in Ω
given that they both meet Ω is

P =
2π A(Ω)

L(∂Ω)2
.

By the isoperimetric inequality,
4π A(Ω) ≤ L(∂Ω)2 with equality
only for circle, the probability
satisfies

P ≤ 1

2
.

Equality holds iff Ω is a round disk.



27. Compute the expected number of intersections of two lines.

Proof. Let L1(p1, θ1) and L2(p2, θ2) be two random lines whose invariant
measure is dK1 ∧ dK2 = dp1 ∧ dθ1 ∧ dp2 ∧ dθ2.
View Λ1 = L(p1, θ1) ∩ Ω as a subset. By (4), the average number of
times that a random line L(p2, θ2) meets Λ1 given that it meets Ω is

E(n) =
2σ1

(
Ω ∩ L(p1, θ1)

)
L(∂Ω)

.

Poincaré’s and Crofton’s Formulæ =⇒ probability that two lines meet is

P = E(n) =

∫
{L1:L1∩Ω 6=∅}

∫
{L2:L2∩Ω 6=∅} n(Λ1 ∩ L2) dK2 dK1∫

{L1:L1∩Ω 6=∅}
∫
{L2:L2∩Ω 6=∅} dK2 dK1

=

∫
{L1:L1∩Ω 6=∅} E(n) dK1∫

{L1:L1∩Ω 6=∅} dK1
=

2
∫
{L1:L1∩Ω 6=∅} σ1

(
Ω ∩ L(p1, θ1)

)
dK1

L(∂Ω)
∫
{L1:L1∩∂Ω 6=∅} dK1

=
2π A(Ω)

L(∂Ω)2
.



28. Bertrand Paradox.

What is the average length of a chord of a compact convex set Ω?

There are many answers. Depends on what “random line” means.

When Ω is disk of radius R,

1 Uniform distance from origin and uniform angle (proportional to dK )

E(σ1) =

∫
{L:L∩∂Ω 6=∅} σ1 dK∫
{L:L∩∂Ω 6=∅} dK

=
π A(Ω)

L(∂Ω)
=
πR

2

2 Uniform point on boundary and uniform angle

E2(σ1) =
1

π L(∂Ω)

∫ L(∂Ω)

0

∫ π

0
σ1 dθ ds =

4R

π

3 Two uniform random points on the boundary

E3(σ1) =
1

L(∂Ω)2

∫ L(∂Ω)

0

∫ L(∂Ω)

0
σ1 ds1 ds2 =

4R

π
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29. Kinematic density for a moving curve.

Let C and Γ be two piecewise C1 curves in
the plane. Using rigid motion, we move Γ
around the plane

Γ′ = Ma,b,φ(Γ).

Ma,b,φ is rotation by angle φ followed by
translation by vector (a, b)

x ′ = x cosφ− b sinφ+ a

y ′ = x sinφ+ y cosφ+ b

The Kinematic Density is the invariant
measure on motions of Γ′ given by

dK = da ∧ db ∧ dφ.
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the plane. Using rigid motion, we move Γ
around the plane

Γ′ = Ma,b,φ(Γ).

Ma,b,φ is rotation by angle φ followed by
translation by vector (a, b)

x ′ = x cosφ− b sinφ+ a

y ′ = x sinφ+ y cosφ+ b

The Kinematic Density is the invariant
measure on motions of Γ′ given by

dK = da ∧ db ∧ dφ.



30. Poincaré’s Formula.

Theorem (Poincaré’s Formula for intersecting curves [1912])

Let C and Γ be piecewise C1 curves in the plane. Let n(C ∩ Γ′) denote
the number of intersection points between C and a moving Γ′. Then∫

{Γ′:C∩Γ′ 6=∅}

n(C ∩ Γ′) dK (Γ′) = 4 L(C ) L(Γ).

We show the formula for C1 curves and add to get it for piecewise C1

curves. We give two computations of the integral over the “flag” subset

S = {(Γ′,X ) : C ∩ Γ′ 6= ∅, X ∈ C ∩ Γ′}.

For simplicity, suppose the origin 0 ∈ C and 0 ∈ Γ.



31. Coordinates for the moving curve.

Figure: Attach a unit frame to the moving curve.

Let I be the integral over S the first way.

I =

∫
{Γ′:C∩Γ′ 6=∅}

n dK =

∫
{Γ′:C∩Γ′ 6=∅}

( ∑
Z∈C∩Γ′

1

)
da db dφ (7)

For the second equivalent way, we pick a point Z common to both curves
first and then the angle ψ between the tangents of C and Γ′.



32. Finish the proof of Poincaré’s Formula.

Figure: Angle between C and γ′ at Z .

Let s be arclength along C from the origin and t arclength along Γ from
the origin corresponding to the common point Z ∈ C ∩ Γ′. Let α(s)
denote the tangent angle at (x(s), y(s)) ∈ C and β(t) the tangent angle
at (u(t), v(t)) ∈ Γ. The coordinates (x , y) of Z are given in two ways

x(s) = a + u(t) cosφ− v(t) sinφ

y(s) = b + u(t) sinφ+ v(t) cosφ

ψ = φ+ β(t)− α(s)



33. Finish the proof of Poincaré’s Formula-.

Change to (s, t, ψ) coordinates for S. Differentiating the defining
equations,

ẋ(s) ds = da +
[
u̇(t) cosφ− v̇(t) sinφ

]
dt −

[
u(t) sinφ+ v(t) cosφ

]
dφ

ẏ(s) ds = db +
[
u̇(t) sinφ+ v̇(t) cosφ

]
dt +

[
u(t) cosφ− v(t) sinφ

]
dφ

dψ = dφ+ β̇(t) dt − α̇(s) ds

Using (cosα, sinα) = (ẋ , ẏ) and (cosβ, sinβ) = (u̇, v̇), the kinematic
density is thus da ∧ db ∧ dφ

=
[
ẋ(s) ds −

[
u̇(t) cosφ− v̇(t) sinφ

]
dt +

[
u(t) sinφ+ v(t) cosφ

]
dφ
]

∧
[
ẏ(s) ds −

[
u̇(t) sinφ+ v̇(t) cosφ

]
dt −

[
u(t) cosφ− v(t) sinφ

]
dφ
]

∧
[
dψ − β̇(t) dt + α̇(s) ds

]
=
(
−ẋ
[
u̇ sinφ+ v̇ cosφ

]
+ ẏ
[
u̇ cosφ− v̇ sinφ

])
ds ∧ dt ∧ dψ

= − sin(ψ) ds ∧ dt ∧ dψ.



34. Finish the proof of Poincaré’s Formula - -.

Using Fubini’s theorem, we find another expression for (7)

I =

∫
C

∫
Γ

2π∫
0

da db dφ =

∫
C

∫
Γ

2π∫
0

| sin(ψ)| dψ dt ds = 4L(C ) L(Γ).



35. Santaló’s Theorem for convex domains.

Figure: Luis Santaló 1911-2001.

Figure: Convex domains have convex
intersection.

Theorem (Santaló’s Formula for convex domains [1935])

Let Ω1 and Ω2 be convex plane domains. We assume that Ω′
2 is moving

in the plane with kinematic density dK2. Then∫
{Ω′

2:Ω
′
2∩Ω1 6=∅}

dK2 = 2π
{

A(Ω1) + A(Ω2)
}

+ L(∂Ω1) L(∂Ω2). (8)



36. Proof of Santaló’s Theorem.

Figure: Extent D of moving center so
domains overlap.

h(α) is the support function for Ω1;
g(α) is the support function for Ω2.

We approximate by convex sets Ω1

and Ω2 with piecewise C2

boundaries. The second domain
Ω′

2 = MΩ2 is moved by a rotation
of angle φ followed by translation of
vector (a, b). The kinematic density
is dK = da ∧ db ∧ dφ.

Fix φ and consider D(φ), the
set of moving centers (a, b) of
Ω′

2(φ) such that the domains
overlap: Ω1 ∩ Ω′

2(φ) 6= ∅.

f (α) = h(α) + g(α+ π − φ)

is the support function for D(φ);



37. Proof of Santaló’s Theorem -.

Use (6) to integrate the area of the moving centers D(φ).

J =

∫
{Ω′

2:Ω1∩Ω′
2 6=∅}

dK

=

2π∫
0

∫
{Ω′

2(φ):Ω1∩Ω′
2(φ) 6=∅}

da db dφ

=
1

2

2π∫
0

2π∫
0

f (α)
[
f (α) + f̈ (α)

]
dα dφ

=
1

2

2π∫
0

2π∫
0

[h(α) + g(α+ π − φ)]

[
h(α) + g(α+ π − φ)

+ḧ(α) + g̈(α+ π − φ)

]
dα dφ



38. Proof of Santaló’s Theorem - -.

Using Fubini’s theorem, Cauchy’s Formula (5) and
∫ 2π
0 ḧ(α) dα = 0,

2J =

∫ 2π

0

∫ 2π

0
h(α)

[
h(α) + ḧ(α)

]
dα dφ

+

∫ 2π

0

∫ 2π

0
g(α+ π − φ) [g(α+ π − φ) + g̈(α+ π − φ)] dα dφ

+

∫ 2π

0

∫ 2π

0
h(α) [g(α+ π − φ) + g̈(α+ π − φ)] dφ dα

+

∫ 2π

0

∫ 2π

0
g(α+ π − φ)

[
h(α) + ḧ(α)

]
dφ dα

= 4π A(Ω1) + 4π A(Ω2)

+

∫ 2π

0
h(α)

[
L(∂Ω2) + 0

]
dα+

∫ 2π

0
L(∂Ω2)

[
h(α) + ḧ(α)

]
dα

= 4π A(Ω1) + 4π A(Ω2) + L(∂Ω1) L(∂Ω2) + L(∂Ω2)
[
L(∂Ω1) + 0

]
.



39. Geometric Probability application of Poincaré’s and Santaló’s Formulæ.

Corollary

Let Ω1 and Ω2 be bounded convex planar domains. The expected number
of intersections of ∂Ω1 with a moving ∂Ω′

2 given that Ω′
2 meets Ω1 is

E(n) =
4 L(∂Ω1) L(∂Ω2)

2π
{

A(Ω1) + A(Ω2)
}

+ L(∂Ω1) L(∂Ω2)
.

If Ω1
∼= Ω2 are congruent, then E(n) ≥ 2 with “=” iff Ω1 is a circle.

Proof. Apply Poincaré’s and Santaló’s Formulas to the expectation

E(n) =

∫
{∂Ω′

2:∂Ω1∩∂Ω′
2 6=∅}

n(∂Ω′
2 ∩ ∂Ω′

2) dK∫
{Ω′

2:Ω1∩Ω′
2 6=∅}

dK2
.

If Ω1
∼= Ω2 are congruent, the isoperimetric inequality implies

E(n) =
4 L2

4π A+ L2
≥ 4 L2

L2 +L2
= 2 with equality iff Ω1 is circle.



40. Total curvature.

Let C be closed piecewise C2 curve.

The curvature is κ =
∂α

∂s
,

the rate of turning, where α gives
the angle via (cosα, sinα) = Ż , the
direction of C at Z .

Figure: Piecewise C2 boundary with
corners at Zi

A piecewise C2 boundary is the

union of n curves ∂Ω =
n⋃

i=1

Ci .

The total curvature is the integral of
the curvatures over the C2 curves Ci

plus the turning angle at the vertices
Zi between Ci and Ci+1

c(∂Ω) =
n∑

i=1

∫
Ci

κ ds +
n∑

i=1

αi

By the Gauss-Bonnet Formula, the
total curvature of a boundary is
related to the Euler Characteristic

c(∂Ω) = 2πχ(Ω).



41. Blaschke’s Theorem for general domains.

Figure: Wilhelm Blaschke 1885–1962

Theorem (Blashke’s Fundamental Formula [1936])

Let Ω1 and Ω2 be plane domains bounded by finitely many oriented,
piecewise C2, simple, closed curves. We assume that Ω′

2 is moving in the
plane with kinematic density dK2. Then∫

{Ω′
2:Ω

′
2∩Ω1 6=∅}

c(Ω1 ∩ Ω′
2) dK2 = 2π

{
A(Ω1) c(Ω2) + A(Ω2) c(Ω1)

+L(∂Ω1) L(∂Ω2)

}
.



42. Special Cases.

Figure: Simple boundaries: count
components of intersection.

Figure: Convex domains have
convex intersection.

Case 1. Both domains bounded by one
simple curve. Then c(Ωi ) = 2π. Let
ν(Ω1 ∩ Ω′

2) be number of components.∫
{Ω′

2:Ω
′
2∩Ω1 6=∅}

ν(Ω1 ∩ Ω′
2) dK2

= 2π
{
A(Ω1) + A(Ω2)

}
+ L(∂Ω1) L(∂Ω2).

Case 2. Both domains convex. Then
ν(Ω1 ∩ Ω2) = 1. We recover (8):∫
{Ω′

2:Ω
′
2∩Ω1 6=∅}

dK2

= 2π
{
A(Ω1) + A(Ω2)

}
+ L(∂Ω1) L(∂Ω2).



43. Isoperimetric Inequality - - An Integral Geometric Proof

Among all domains in the plane with a fixed boundary length, the circle
has the greatest area. For simplicity we focus on domains bounded by
simple curves.

Theorem (Isoperimetric Inequality.)

1 Let C be a simple closed curve in the plane whose length is L and
that encloses an area A. Then the following inequality holds

4πA ≤ L2. (9)

2 If equality holds in (9), then the curve C is a circle.

Simple means curve is assumed to have no self intersections.
A circle of radius r has L = 2πr and encloses A = πr2 = L2

4π .
Thus the isoperimetric Inequality says if C is a simple closed curve of
length L and encloses an area A, then C encloses an area no bigger than
the area of the circle with the same length.



44. Convex Hull

A set K ⊂ E2 is convex if for every pair of points x , y ∈ K , the straight
line segment xy from x to y is also in K , i.e., xy ⊂ K .
The bounding curve of a convex set is automatically rectifiable. The
convex hull of K , denoted K̂ , is the smallest convex set that contains K .
This is equivalent to the intersection of all halfspaces that contain K ,

K̂ =
⋂

Ω is convex
Ω ⊃ K

Ω =
⋂

H is a halfspace
H ⊃ K

H.

A halfspace is a set of the form H = {(x , y) ∈ E2 : ax + by ≤ c}, where
(a, b) is a unit vector and c is any real number.



45. Reduce proof of Isoperimetric Inequality to convex domain case.

Since K ⊂ K̂ by its definition, we have A(K̂ ) ≥ A(K ).
Taking convex hull reduces the boundary length because the interior
segments of the boundary curve, the components of C − ∂K̂ of C are
replaced by straight line segments in ∂K̂ . Thus also L(∂K̂ ) ≤ L(∂K ).

Figure: The region K and its convex hull K̂ .



46. Reduce proof of Isoperimetric Inequality to convex curves case.-

Thus the isoperimetric inequality for convex sets implies

4πA ≤ 4πÂ ≤ L̂2 ≤ L2.

Furthermore, one may also argue that equality 4πA = L2 implies equality
4πÂ = L̂2 in the isoperimetric inequality for convex sets so that K̂ is a
circle. But then so is K .

The basic idea is to consider the the extreme points ∂∗K̂ ⊂ ∂K̂ of K̂ ,
that is points x ∈ ∂K̂ such that if x = λy + (1− λ)z for some y , z ∈ K̂
and 0 < λ < 1 then y = z = x . K̂ is the convex hull of its extreme
points. However, the extreme points of the convex hull lie in the curve
∂∗K̂ ⊂ C ∩ ∂K̂ . K̂ being a circle implies that every boundary point is an
extreme point, and since they come from C , it means that C is a circle.



47. Isoperimetric Inequality for convex sets

There are many proofs of the isoperimetric inequality. We shall give two
integral geometric arguments due to Luis Santaló.

1 The first argument only establishes the inequality part 4πA ≤ L2.

2 To show that the circle is the unique domain for which the
Isoperimetric Inequality is equality, we prove a strong isoperimetric
inequality (12) that follows from Bonnesen’s inequality (11). The
second argument is Santaló’s proof of Bonnesen’s inequality.



48. Santaló’s proof of the Isoperimetric Inequality for convex sets.

Lemma (Isoperimetric Inequality for convex sets.)

If Ω is a convex plane domain with boundary length L and area A, then

4πA ≤ L2. (10)

Proof. Let Ω1 and Ω2 be congruent copies of Ω. Let mi denote the
measure of positions of a moving Ω′

2 for which the number of
intersections

n(∂Ω1 ∩ ∂Ω′
2) = i .

Note that positions that have an odd or infinite number of intersection
points is dK -measure zero so that

mi = 0 if i is odd.



49. Finish Santaló’s proof of the Isoperimetric Inequality.

Then by Poincaré’s and Santaló’s formulas,

4 L(∂Ω)2 =

∫
{Ω′

2:∂Ω′
2∩∂Ω1 6=∅}

n(∂Ω1 ∩ ∂Ω′
2) dK = 2m2 + 4m4 + 6m6 + · · · ,

4π A(Ω) + L(∂Ω)2 =

∫
{Ω′

2:Ω
′
2∩Ω1 6=∅}

dK = m2 + m4 + m6 + · · · .

Subtracting,

L(∂Ω)2 − 4π A(Ω) = m4 + 2m6 + 3m8 + · · · ≥ 0,

since all the measures mi ≥ 0.



50. Inradius / Circumradius

Let K be the region bounded by γ. The radius of the smallest circular
disk containing K is called the circumradius, denoted Rout. The radius of
the largest circular disk contained in K is the inradius.

Rin = sup{r : there is p ∈ E2 such that Br (p) ⊆ K}
Rout = inf{r : there exists p ∈ E2 such that K ⊆ Br (p)}

Figure: The disks realizing the circumradius, Rout, and inradius, Rin, of K .



51. Bonnesen’s Inequality

Figure: T. Bonnesen 1873–1935

Theorem (Bonnesen’s Inequality [1921])

Let Ω be a convex plane domain whose
boundary has length L and whose area is A.
Let Rin and Rout denote the inradius and
circumradius of the region Ω. Then

sL ≥ A + πs2 for all Rin ≤ s ≤ Rout. (11)

Bonnesen’s strong isoperimetric inequality
follows immediately.

Corollary (Strong Isoperimetric Inequality of Bonnesen)

Let Ω be a convex planar domain with boundary length L and area A.
Let Rin and Rout denote the inradius and circumradius of the Ω. Then

L2 − 4πA ≥ π2(Rout − Rin)
2. (12)



52. Bonnesen’s Inequality implies the Strong Isoperimetric Inequality

Proof of corollary. Consider the quadratic function f (s) = πs2 − Ls + A.
By Bonnesen’s inequality, f (s) ≤ 0 for all Rin ≤ s ≤ Rout. Hence these
numbers are located between the zeros of f (s), namely

Rout ≤
L +

√
L2 − 4πA

2π

L−
√

L2 − 4πA

2π
≤ Rin.

Subtracting these inequalities gives

Rout − Rin ≤
√

L2 − 4πA

π
,

which is (12).



53. Strong Isoperimetric Inequality implies the Isoperimetric Inequality

Obvious. The strong isoperimetric inequality (12) implies part one of the
isoperimetric inequality (10), since π2(Rout − Rin)

2 ≥ 0.

Moreover, if equality holds in (9), then L2 − 4πA = 0 which implies that
Rin = Rout, or Ω is a circle.



54. Santaló’s proof of Bonnesen’s inequality

Theorem (Bonnesen’s Inequality)

Let Ω be a bounded convex plane domain whose boundary has length L
and whose area is A. Let Rin and Rout be the inradius and circumradius
of the region Ω. Then sL ≥ A + πs2 for all Rin ≤ s ≤ Rout.

Proof. Let Ω1 = Ω and Ω′
2 be a moving circular disk of radius s.

Because Rin ≤ s ≤ Rout, the sets overlap, Ω1 ∩ Ω′
2 6= ∅, if and only if

their boundaries overlap, ∂Ω1 ∩ ∂Ω′
2 6= ∅, hence the Poincaré and

Blaschke integrals are taken over the same positions of Ω′
2.

As before, let mi denote the measure of positions of the moving Ω′
2 for

which the number of intersections n(∂Ω1 ∩ ∂Ω′
2) = i , i.e.,

mi = dK
({

Ω′
2 : n(∂Ω1 ∩ ∂Ω′

2) = i
})

.

Again, positions that have an odd or infinite number of intersection
points is dK -measure zero so that mi = 0 if i is odd.



55. Finish Santaló’s proof of Bonnesen’s Inequality.

Then by Poincaré’s and Santaló’s formulas,

8πs L(∂Ω) =

∫
{Ω′

2:Ω
′
2∩Ω1 6=∅}

n(∂Ω1 ∩ ∂Ω′
2) dK = 2m2 + 4m4 + 6m6 + · · · ,

2π A(Ω) + 2π2s2 + 2πs L(∂Ω) =

∫
{Ω′

2:Ω
′
2∩Ω1 6=∅}

dK = m2 + m4 + m6 + · · · .

Subtracting,

2π
(
s L(∂Ω)− A(Ω)− πs2

)
= m4 + 2m6 + 3m8 + · · · ≥ 0,

since all the measures mi ≥ 0.



Thanks!




