Processing math: 0%

K-groups and the Chern Character


Tags


Comments


2025 年 4 月
 123456
78910111213
14151617181920
21222324252627
282930  

Let E be a complex vector bundle over a compact smooth manifold M. Let \nabla^E be a (C-linear) connection on E and let R^E denote its curvature.

The Chern character form associated to \nabla^E is defined by
ch\left(E,\nabla^E\right)=tr\left[ \exp\left(\frac{\sqrt{-1}}{2\pi}R^E\right)\right]\in\Omega^{even}(M).
Obviously, ch\left(E,\nabla^E\right) is a closed form. We denote the association cohomology class by ch(E) which is called the Chern character of E.

Proposition 1. Let E, F are complex vector bundles on manifold M. Then the following propositions hold:
  1. ch(E\oplus F)= ch(E)+ch(F); \qquad (\oplus is Whithney direct sum)
  2. ch(E\otimes F)=ch(E)\times ch(F);
  3. If E\cong F, then ch(E)=ch(F).

The crux of the proof is that the calculate does not depend on the representative element.

Denote by Vector(M) the set of all complex vector bundles over M, then under the Whitney direct sum operation, Vect(M) becomes a semi-abelian group. And (Vect(M), \otimes, \oplus) is a semi-ring. Now we introduce an equivalence relation ‘\sim’ in Vect(M) such that
E \sim F\Leftrightarrow E\cong F.
So the following map
ch : Vect(M)\rightarrow H^{even}_dR(M,C)
is a homomorphism between semi-groups. there is a nature method for extending a semi-abelian group to a abelian group. The fundamental ideal: let N be the natural number(0 \not\in N). Now we extend semi-abelian group (N,+) to a abelian group.

i) Take
N\times N=\set{(m,n)|m,n\in N}.
In N\times N, there have a natural sum ‘+’ as follows:
\bigg( \forall m_1,m_2,n_1,n_2 \in N \bigg) \quad (m_1,n_1)+(m_2,n_2)=(m_1+m_2, n_1+n_2).
One introduces an equivalence relation ‘\sim’ in N\times N as follows:
(m_1,n_1)\sim (m_2,n_2) \Leftrightarrow m_1+n_2=m_2+n_1.
Please note there is not subtract. Let Z=N\times N /\sim, it is easily proved that Z is a abelian group. The zero element is [(m,m)],m\in N. And [(m,n)]^{-1}=[(n,m)].

ii)Make a map
\phi : N \rightarrow Z, \qquad \phi(m)=[(m+1,1)].
Obviously, the map \phi is isomorphism from N to a semi-subgroup \set{[(m+1,1)]}. So Z is a dilation of N. then we can denote
m=[(m+1,1)],\quad 0=[(m,m)],\quad -m=[(1,m+1)],\quad\forall m \in N.
One can prove this dilation is the smallest.

Now we can extend semi-abelian group Vect(M)/\sim to a group K(M) which is called the K-group of M. Naturally, the map ch is extended a group homomorphism,
ch: K(M) \rightarrow H^{even}_dR(M,\C).
Atiyah and Hirzebruch prove this homomorphism is an isomorphism if one ignores the torsion elements in K(M). This theory belongs the K-theory.

Example 1. Let M be a closed manifold.
\langle \hat{A}(TM)ch(E),[M] \rangle =\int_M \hat{A}(TM,\nabla^{TM})ch(E,\nabla^E)\in \C.
If M is an even dimensional oriented spin closed manifold(see[milnor]), the characteristic number
\langle \hat{A}(TM)ch(E),[M] \rangle
is a integer.(Atiyah, Hirzebruch, Borel theorem)


Other news

  • 使用Chrome播放本地SWF文件

    两个版本, 一个是选择文件, 一个是直接拖拽。 当然也有合并到一起的办法, 参考这里。直接将下列文件放到和fl…

  • Chrome下载完成后显示病毒扫描失败的解决办法

    很蛋疼的一个提示, 一个pdf下载好后给提示病毒扫描失败。把下载的pdf直接删除了。 解决办法是运行如下的注册…

  • C1驾照学习经验

    历时4个月+15天, 我的C1驾照到手了. 下面分享下经验, 为广大学员解惑。 学驾照, 要趁早 为啥呢, 一…