The following equations are represented in the HTML source code as LaTeX expressions.
The Cauchy-Schwarz Inequality
(n∑k=1akbk)2≤(n∑k=1a2k)(n∑k=1b2k)
Auto Numbering and Ref?
Suppose that f is a function with period π, then we have
∫t+πtf(x)dx=∫π0f(x)dx.
From (1) we know that ….
Can we use \newcommand to define some macro?
define newcommand as:
|
$\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$ |
We consider, for various values of s, the n-dimensional integral
Wn(s):=∫[0,1]n|n∑k=1e2πixk|sdx
which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral (1) expresses the s-th moment of the distance to the origin after n steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for k a nonnegative integer
W3(k)=Re3F2(12,−k2,−k21,1|4).
Appropriately defined, (2) also holds for negative odd integers. The reason for (2) was long a mystery, but it will be explained at the end of the paper.
How about MathML?
Definition of Christoffel Symbols
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
<math xmlns=“http://www.w3.org/1998/Math/MathML” display=“block”> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mrow> <mo>∇</mo> </mrow> <mrow> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo>)</mo> </mrow> <mrow> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msup> <msup> <mrow> <mo stretchy=“false”>(</mo> <msub> <mrow> <mo>∇</mo> </mrow> <mrow> <mi>i</mi> </mrow> </msub> <mi>Y</mi> <mo stretchy=“false”>)</mo> </mrow> <mrow> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msup> </mrow><mrow> <mo>(</mo> <mfrac> <mrow> <mo>∂</mo> <msup> <mrow> <mi>Y</mi> </mrow> <mrow> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo>∂</mo> <msup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mrow> <mi>Γ</mi> </mrow> <mrow> <mi>i</mi> <mi>m</mi> </mrow> <mrow> <mi>k</mi> </mrow> </msubsup> <msup> <mrow> <mi>Y</mi> </mrow> <mrow> <mi>m</mi> </mrow> </msup> <mo>)</mo> </mrow> </math> |
(∇XY)k=Xi(∇iY)k=Xi(∂Yk∂xi+ΓkimYm)
本作品采用创作共用版权协议, 要求署名、非商业用途和保持一致. 转载本站内容必须也遵循署名-非商业用途-保持一致的创作共用协议.
回复 魏美春 取消回复