Processing math: 100%

Chern-weil Theory in Odd Dimension


Tags


Comments


2025 年 4 月
 123456
78910111213
14151617181920
21222324252627
282930  

In the previous section, we discussed the theory of even dimensional characteristic forms and classes. i.e.
Let M be a smooth closed manifold and E be a vector bundle with a connection E. We constructed a serial closed form
tr[f(12πRE)]Ωeven(M),where f is a power series in one variable. Then we obtain some even dimensional characteristic classes
[tr[f(12πRE)]]HevendR(M,C).In this section, we will discuss an odd dimensional analogue of this result.

Let M be a smooth closed manifold. Let g be a smooth map from M to the general linear group GL(N,C) with N>0 a positive integer:
g: MGL(M,C),pg(p)GL(N,C),i.e.g=(gij)N×N  where  gijC(M,C).
Let CN|M denote the trivial complex vector bundle of rank N over M. Then the above g can be viewed as a section of Aut(CN|M). Let d denote a trivial connection on CN|M. Then we consider n-form tr[(g1dg)n].

  1. Assume n is a positive even integer,
    tr[(g1dg)n]=12tr[(g1dg)n1(g1dg)+(g1dg)(g1dg)n1]=12tr[(g1dg)n1(g1dg)(1)(n1)1(g1dg)(g1dg)n1]=tr[(g1dg)n1,(g1dg)]=0.
  2. Assume n is a positive odd integer. Notice that I=gg1, then dg1=g1(dg)g1. Hence
    d[(g1dg)n]=ni=1(1)i1(g1dg)i1d(g1dg)(g1dg)ni=ni=1(1)i1(g1dg)i1(dg1)(dg)(g1dg)ni=ni=1(1)i1(g1dg)i1(g1(dg)g1)(dg)(g1dg)ni=ni=1(1)i(g1dg)n+1=(g1dg)n+1.[by n is a odd positive integer]
    By the above case,
    dtr[(g1dg)n]=tr[d(g1dg)n]=tr[(g1dg)n+1]=0.
This show tr[(g1dg)n] is a closed form when n is a positive odd integer. Roughly speaking, the cohomology class [tr[(g1dg)n]]HndR(M,C) depends on g and trivial connection d. The following lemma shows that cohomology class does not depend on smooth deformations(homotopy) of g.
Lemma 1. If gt: MGL(N,C) depends smoothly on t[0,1], then for any positive odd integer n, the following identity holds,
ttr[(g1tdgt)n]=nd[g1tgtt(g1tdgt)n1].

If this lemma have been proved, one can integrate at both sides of above identity
tr[(g11dg1)n]tr[(g10dg0)n]=10ttr[(g1tdgt)n]dt=n10d[g1tgtt(g1tdgt)n1]dt=d[n10[g1tgtt(g1tdgt)n1]dt].
Let η=n10[g1tgtt(g1tdgt)n1]dtΩn1(M), then tr[(g11dg1)n]tr[(g10dg0)n]=dη, i.e.
[tr[(g11dg1)n]]=[tr[(g10dg0)n]].Now, we give the proof of lemma 1.
Proof . By an analogue of dg1=g1(dg)g1, one can obtain tg1t=g1t(gtt)g1t. And, if AΩodd(M,End(CN)), BΩeven(M,End(CN)), one easily verifies that AB=BA by tr[A,B]=0. Hence
ttr[(g1tdgt)n]=tr[t(g1tdgt)n]=tr[ni=1(g1tdgt)i1t(g1tdgt)(g1tdgt)ni]=tr[ni=1t(g1tdgt)(g1tdgt)n1]by n is an odd integer=ntr[g1tt(dgt)(g1tdgt)n1+g1t(dgtt)(g1tdgt)n1]=ntr[g1tgttg1t(dgt)(g1tdgt)n1+g1t(dgtt)(g1tdgt)n1]=ntr[g1t(gtt)(g1tdgt)n+d(g1tgtt(g1tdgt)n1)(dg1t)gtt(g1tdgt)n1g1tgttd((g1tdgt)n1)]=ntr[g1t(gtt)(g1tdgt)n+d(g1tgtt(g1tdgt)n1)+g1t(dgt)g1tgtt(g1tdgt)n1]=ntr[g1t(gtt)(g1tdgt)n+d(g1tgtt(g1tdgt)n1)+g1t(gtt)(g1tdgt)n]=ndtr[g1tgtt(g1tdgt)n1].

Corollary 2. If f,g: ML(N,C) are two smooth maps from M to GL(N,C), then for any positive odd integer n, there exists ωnΩn1(M) such that the following transgression formula holds,
tr[((fg)1d(fg))n]=tr[(f1df)n]+tr[(g1dg)n]+dωn.

Proof . We consider the trivial vector bundle
C2N|M=CN|MCN|M.We equip C2N|M with the trivial connection ˜d induced from d on CN|M. For any u[0,π2], let hu: MGL(2N,C) be defined by
hu=(f001)(cos(u)sin(u)sin(u)cos(u))(100g)(cos(u)sin(u)sin(u)cos(u)).Obviously,
h0=(f00g),(fg001) Thus, hu provides a smooth homotopy between two sections (fg,1) and (f,g) in Γ( Aut(C2N|M)). By the above lemma, for any positive odd inetger n, there exists ωnΩn1(M) such that
tr[(h10˜dh0)n]=tr[(h1π2˜dh1π2)n]+dωn
i.e.,
tr[((fg)1d(fg))n]=tr[(f1df)n]+tr[(g1dg)n]+dωn.

Now, we consider the change of tr[(g1dg)n] under different trivial connection. Let E be a trivial complex vector bundle on M. As we take a global basis of E, a trivialization is determined, and a trivial connection is determined. Let d be the trivial connection associated basis {e1,,en}. Assume {e1,,en} is another basis of E, and
(e1,,en)=(e1,,en)A,AΓ(Aut(CN|M)).
If d is the trivial connection associated {e1,,en}, then one can verify
d=A1dA.
Exercise 1. Please verify d=A1dA.

Corollary 3. Let gΓ(Aut(CN|M)). If d is another trivial connection on CN|M), then for any positive odd integer n, there exists ωnΩn1(M) such that the following transgression formula holds,
tr[(g1dg)n]=tr[(g1dg)n]+dωn.

Proof . There exists AΓ(Aut(CN|M)) such that
d=A1dA=d+A1(dA).One deduces that
g1dg=g1dgd=g1A1dAgA1dA=A1(Ag1A1dAgA1d)A=A1((AgA1)d(AgA1))A.
From above corollary, there exists ωnΩn1(M) for any positive odd integer n such that
tr[(g1dg)n]=tr[A1((AgA1)d(AgA1))nA]=tr[((AgA1)d(AgA1))n]=tr[(A1dA)n]+tr[(AdA1)n]+tr[(g1dg)n]dωn=tr[(g1dg)n]dωn.(It is from dA=A(dA1)A)

Remark 1. The cohomology class determine by tr[(g1dg)n] depends only on the homotopy class of g: MGL(N,C).

When n is a positive odd integer, we call the closed n-form
(12π(1))n+12tr[(g1dg)n]
the n-th Chern form associated to g,d and denote it by cn(g,d). The associated cohomology class will be called the n-th Chern class associated to the homotopy class [g], denote it by cn([g]).

We define the odd Chern character form associated to g,d by
ch(g,d)=n=0n!(2n+1)!c2n+1(g,d). Let ch([g]) denote the associated cohomology class which we call the odd Chern character associated to [g].

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据


Other news

  • 使用Chrome播放本地SWF文件

    两个版本, 一个是选择文件, 一个是直接拖拽。 当然也有合并到一起的办法, 参考这里。直接将下列文件放到和fl…

  • Chrome下载完成后显示病毒扫描失败的解决办法

    很蛋疼的一个提示, 一个pdf下载好后给提示病毒扫描失败。把下载的pdf直接删除了。 解决办法是运行如下的注册…

  • C1驾照学习经验

    历时4个月+15天, 我的C1驾照到手了. 下面分享下经验, 为广大学员解惑。 学驾照, 要趁早 为啥呢, 一…