Loading [MathJax]/jax/output/SVG/jax.js

Bott and Duistermaat-Herckman Formulas


Tags


Comments


2025 年 4 月
 123456
78910111213
14151617181920
21222324252627
282930  

In Chapter One we have defined characteristic classes and numbers. A natural question is hoe to compute these characteristic numbers. Let ω be a characteristic form on an even dimensional smooth closed oriented manifold M. If
ω=ω[1]+ω[2]++ω[dimM],ω[i]Ωi(M),i=1,,dimM, then the characteristic number associated ω is defined by Mω=Mω[dimM]. The Bott’s result shows that
Mω[dimM]=pAμ(P),

where A is the fixed point set of M under the lie group S1 action, μ is a function on A. 1. Berline-Vergne Localization Formula Let M be an even dimensional smooth closed oriented manifold. We assume that M admits an S1-(right)action. On M, S1-(right)action is defined by a smooth map
ϕ: M×S1M,ϕ(P,a)=Pa,for any aS1 such that for any a,bS1, PM

  1. P1=ϕ(P,1)=P;
  2. (Pa)b=P(ab).
One easily verifies the map a:PMa(P)=Pa is a diffeomorphism for any aS1. We claim a riemannian metric gTM is S1-invariant, if for any aS1 always have agTM=gTM. Since S1 is a compact Lie group, there always exists a S1-invariant metric on M. In fact, if gTM is general riemannian metric, the following metric is S1-invariant
˜gTM=aS1agTM.
Exercise 1. Please verify ˜gTM is S1-invariant.
Then we can assume that there exists a S1-invariant riemannian metric gTM without loss of generally.

For any PM, the map P: S1M, P(a)=Pa, gives a curve on M. By S1 is a Lie group, using the exponent map this curve can be parameterize. Let tLie(S1) be a generator of the Lie algebra of S1. then the above curve is
γP(ϵ)=ϕ(P,exp(ϵt))=Pexp(ϵt).Take K(P)=γP(0)=(γP)ϵ|ϵ=0. Then we obtain a vector field K on M, and for any fC(M),
KPf=ddϵf(Pexp(ϵt))|ϵ=0, for any PM.

Exercise 2. Prove the integral curve crossing P of K is γP(ϵ).

By the S1-action preserves gTM, K is a Killing vector field on M(see[Chen, Li. Rie.Geo., Beijing university]). Let E be Levi-Civita connection associated gTM. Then for any X,YΓ(TM),
TMXK,Y+TMYK,X=0,i.e.,
(TMK)(X),Y+(TMK)(Y),X=0.It means TMK is a antisymmetric operator on Γ(TM). Now we prove this fact. Let LK denote the Lie derivative of K on Γ(TM). Since the S1-action preserves gTM and the integral curve of K is γP, LK also preserves gTM, i.e., LKgTM=0. For any X,YΓ(TM), one has
TMXK,Y+TMYK,X=[X,K]+TMKX,Y+X,[Y,K]+TMKY=LKX,Y+X,LKY+KX,Y=LKX,Y+X,LKY+LKX,Y=(LKgTM)(X,Y)=0.
In fact, K is a Killing vector field if and only if (1) holds.

We still denote the Lei derivative of K on Ω(M) by LK. The following Cartan homotopy formula on ΩM is well-known,
LK=diK+iKd,where iK: ΩMΩ1M,
iK(ω1ωk)=kj=1(1)j1ω1ˆωjωk.Let ΩK(M)={ωΩK(M):LKω=0} be the subspace of LK-invariant form. Set
dK=d+ik:Ω(M)Ω(M). Then, by d2=0 and i2K=0 one has
d2K=diK+iKd=LK. Thus dK preserves ΩK(M) and d2K|ΩK(M)=0. The corresponding cohomology group
HK(M)=kerdK|ΩK(M)ImdK|ΩK(M) is called the S1 equivariant cohomology of M.

Now, consider any element ωΩ(M). We say ω is dK-closed if dKω=0. The equivariant localization formula duo to Berline-Vergne(or Atiyah-Bott) shows that the integration of a dK-closed differential form over M can be localized to the zero set of the Killing vector field K.

Exercise 3. Prove that
zero{K}= the fixed point set of M under S1-action is empty.

Proposition 1. If K has no zeros on M, then for any ωΩ(M) which is dK-closed, one has Mω=0.

Proof . Let θΩ1(M) be the one form on M such that for any XΓ(TM), iKθ=X,K. By LK preserves gTM, one has
LK(θ(X))=LK(iXθ)=LKX,K.i.e.,
(LKθ)(X)+θ(LKX)=LKK,X+LKX,K=iLKXθ=θ(LKX).
Thus LKθ=0. one then sees that dKθ is dK-closed.
By ω is dK-closed, for any T0 one has
Mωexp(TdKθ)=Mω[1+i=1(1)ii!Ti(dKθ)i]=Mω+MωdK[i=1(1)ii!Tiθ(dKθ)i1]=Mω+(1)deg(ω)MdK[ωi=1(1)ii!Tiθ(dKθ)i1]=Mω.
Otherwise,
Mωexp(Tdkθ)=Mωexp[T(dθ+iKθ)]=Mωexp[T(dθ+|k|2)]=M(ωexp(T|K|2))[dimM/2i=1(1)ii!Ti(dθ)i].
And, as K has no zeros on M, |K| has a positive lower bound δ>0 on M. By M is closed, one sees easily that
M(ωexp(T|K|2))[dimM/2i=1(1)ii!Ti(dθ)i]0, as T0.Thus
Mω=0.

In the previous discussion we considered the case of zero(K)=. Now we assume the zero set of K is discrete.

For every pzero(K), there is a small open neighborhood Up of p and an oriented coordinate system (x1,,x2l) with 2l=dimM such that we have
gTM|Up=(dx1)2++(dx2l)2and
K|Up=li=1λi(x2ix2i1x2i1x2i)with each λi0 for 1il.

Set
λ(p)=λ1λl.
In fact, the existence of Up is not trivial. But, I am very sorry about that I don’t understand about the existence.

Theorem 2. If zero(K) is discrete, then for any dK-closed form ωΩ(M), one has
Mω=(2π)lpzero(K)ω[0](p)λ(p).

Proof . Since Mpzero(K)Up is closed manifold and K has no zeros on Mpzero(K)Up, using the proposition 1 we have
Mpzero(K)Upω=Mpzero(K)Upωexp(TdKθ)=0.Hence
Mω=Mpzero(K)Upωexp(TdKθ)+pzero(K)Upωexp(TdKθ)=pzero(K)Upωexp(TdKθ).
On Up we have
|K|2=li=1λ2i[(x2i)2+(x2i1)2],θ=li=1λi(x2idx2i1x2i1dx2i).Then,
Upωexp(TdKθ)=Upωexp(T|K|2Tdθ)=Upωexp[Tli=1λ2i((x2i1)2+(x2i)2)]exp(2Tli=1λidx2i1dx2i)=Upexp[Tli=1λ2i((x2i1)2+(x2i)2)]ωk=0(2Tli=1λidx2i1dx2i)k=Upexp[Tli=1λ2i((x2i1)2+(x2i)2)]lj=0ω[2j](2Tli=1λidx2i1dx2i)lj
Make the change of the coordinate system (x1,,x2l)T(x1,,x2l). Above integral is rewritten
TUpexp[Tli=1λ2i1T((x2i1)2+(x2i)2)]lj=0Tjω[2j](xT)2lj(Tli=1λiT1dx2i1dx2i)lj=TUpexp[li=1λ2i((x2i1)2+(x2i)2)]lj=0Tjω[2j](xT)2lj(li=1λidx2i1dx2i)lj
When 0<jl, using Rexp(x2)dx=π one can easily find that
TUpexp[li=1λ2i((x2i1)2+(x2i)2)]Tjω[2j](xT)2lj(li=1λidx2i1dx2i)lj0asT+.
Thus,
Upωexp(TdKθ)=TUpexp[li=1λ2i((x2i1)2+(x2i)2)]ω[0](xT)2l(li=1λidx2i1dx2i)l=TUpexp[li=1λ2i((x2i1)2+(x2i)2)]ω[0](xT)2lλ(p)1dλ1x1dλ1x2dλlx2l(2π)lλ(p)1ω[0](0)asT+.
this completes the proof.

《“Bott and Duistermaat-Herckman Formulas”》 有 1 条评论

  1. 游神 的头像

    建议你把Bismut的文章Localization formulas, superconnections, and the index theorem for families拿出来写写。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据


Other news

  • 使用Chrome播放本地SWF文件

    两个版本, 一个是选择文件, 一个是直接拖拽。 当然也有合并到一起的办法, 参考这里。直接将下列文件放到和fl…

  • Chrome下载完成后显示病毒扫描失败的解决办法

    很蛋疼的一个提示, 一个pdf下载好后给提示病毒扫描失败。把下载的pdf直接删除了。 解决办法是运行如下的注册…

  • C1驾照学习经验

    历时4个月+15天, 我的C1驾照到手了. 下面分享下经验, 为广大学员解惑。 学驾照, 要趁早 为啥呢, 一…