A Problem about Limits of Sequence
I have been asked to solve the following problem:
Let $\set{x_n}_{n=1}^\infty$ be a real sequence defined by $$x_{n+1}=\frac{C}{2}+\frac{x_n^2}{2},$$ with $x_1=C/2$, where $C$ is a constant, try to show that
- If $C>1$, then $\set{x_n}_{n=1}^\infty$ is divergent;
- If $0< C\leq 1$, then $\set{x_n}_{n=1}^\infty$ is convergent;
- If $-3\leq C < 0$, then $\set{x_n}_{n=1}^\infty$ is convergent;
Try to discuss the case of $C< -3$, is $\set{x_n}_{n=1}^\infty$ divergent?
If you have any idea, please tell me! Just leave a word below!
本作品采用创作共用版权协议, 要求署名、非商业用途和保持一致. 转载本站内容必须也遵循署名-非商业用途-保持一致的创作共用协议.
微积分的助教真悲催啊。《数学分析中的证题方法与难题选解》第8面
哈哈, 是么? 还以为这个问题没解呢?你看, 我在strackexchange上问的同样问题, 答案也不是非常好啊.