Recall that given a vector bundle on M, there exists (many) connections \nabla^E\mathpunct{:}\Gamma(E)\to\Gamma(T^\ast M\otimes E), which can be extended to \nabla^E\mathpunct{:}\Omega^\cdot(M;E)\to\Omega^{\cdot+1}(M;E), and we defined the curvature (operator) R^E of \nabla^E as
R^E=(\nabla^E)^2\in\Omega^{\cdot+2}(M;\End(E)),
it can be viewed as a matrix of 2-forms. What is more, it satisfy the Bianchi identity [\nabla^E,R^E]=0.
For any smooth section A of the bundle of \End(E) (which is a vector bundle of fiber \End(E_p), where E_p is the fiber of E at p), the fiberwise trace of A is a smooth function on M, denote it by \tr[A]. The function \tr[A] further induces a map
\begin{align*}
\tr:\Omega^\cdot(M;\End(E))&\to\Omega^\cdot(M),\\
\omega\otimes A&\mapsto\tr[A]\omega,
\end{align*}
where \omega\in\Omega^\cdot(M) and A\in\Gamma(\End(E)), we still call it the function of trace.
We also extend the Lie bracket operation on \End(E) to \Omega^\cdot(M,\End(E)) as
[A,B]=A\wedge B-(-1)^{|A||B|}A\wedge B,
where A\in\Omega^k(M;\End(E)), B\in\Omega^l(M;\End(E)) (thus, |A|=k, |B|=l).
Now, we turn to proof the two fundamental Lemmas as a preliminary of the Theorem of Chern-Weil.
\tr[A,B]=0.
\begin{align*} [A,B]&=(\omega A_0)\wedge(\eta B_0)-(-1)^{kl}(\eta B_0)\wedge(\omega A_0)\\ &=(\omega\wedge\eta)A_0 B_0-(-1)^{kl}(\eta\wedge\omega)(B_0A_0)\\ &=(\omega\wedge\eta)(A_0B_0-B_0A_0)\\ &=(\omega\wedge\eta)[A_0,B_0]. \end{align*}
\tr\left[[\nabla^E,A]\right]=\rd(\tr[A]).
Before we dealing with the proof, Let us recall some facts. Firstly,
[\nabla^E,A]=\nabla^EA-(-1)^{|A|}A\nabla^E.
In fact, Recall that, if we define a map A\mathpunct{:}\Omega^\cdot(M,E)\to\Omega^\cdot(M;E) by (As)(p)=A(p)s(p), for s\in\Omega^\cdot(M;E), then A\in\Omega^\cdot(M;\End(E)) if and only if A(fs)=f(As) holds for any f\in C^\infty(M) and s\in\Omega^\cdot(M;\End(E)).
Now, for \nabla^E\mathpunct{:}\Omega^\cdot(M;E)\to\Omega^{\cdot+1}(M;E), we have
\begin{align*}
[\nabla^E,A](fs)&=(\nabla^EA-(-1)^{|A|}A\nabla^E)(fs)\\
&=\nabla^E(A(fs))-(-1)^{|A|}A(\nabla^E(fs))\\
&=\nabla^E(f(As))-(-1)^{|A|}A(\nabla^E(fs))\\
&=\rd f\wedge(As)+f\nabla^E(As)-(-1)^{|A|}(A(\rd f\wedge s+f\nabla^E s))\\
&=\rd f\wedge(As)-(-1)^{|A|}A(\rd f\wedge s)+f\nabla^E(As)-(-1)^{|A|}fA(\nabla^E s)\\
&=f\cdot(\nabla^E(As)-(-1)^{|A|}A\nabla^Es)\\
&=f\cdot([\nabla^E,A]s).
\end{align*}
Thus, [\nabla^E,A]\in\Omega^\cdot(M;\End(E)). This show that \tr\left[[\nabla^E,A]\right] make sense.
\nabla^E-\tilde\nabla^E\in\Omega^\cdot(M;\End(E)).
Thus, the above Lemma says that
\tr\left[[\nabla^E-\tilde\nabla^E,A]\right]=0,
that is, the righthand side of the formula in the Lemma is independent on \nabla^E.
Since the righthand side is a local operator (\nabla^E is local), we can assume that E is trivial, and take a connection as \nabla^E=\rd+\omega for some \omega\in\Omega^\cdot(M;\End(E)) to verify that the formula holds.
In fact,
\begin{align*}
[\nabla^E,A]&=[\rd,A]+[\omega,A]\\
&=\rd\cdot A-(-1)^{|A|}A\rd+[\omega,A],
\end{align*}
thus
\tr\left[[\nabla^E,A]\right]=\tr[\rd\cdot A-(-1)^{|A|}A\rd].
Note that
\begin{align*}
(\rd\cdot A-(-1)^{|A|}A\rd)s&=\rd\cdot(As)-(-1)^{|A|}A(\rd s)\\
&=(\rd A)s+(-1)^{|A|}A\cdot\rd s-(-1)^{|A|}A(\rd s)\\
&=(\rd A)s,
\end{align*}
thus,
\tr\left[[\nabla^E,A]\right]=\tr[\rd A]=\rd(\tr[A]).
Now we have \tr\left[[\nabla^E,A]\right]=\rd(\tr[A]), thus, if [\nabla^E,A]=0, for example, take A=R^E, then \tr[A] is closed. This shows that we can find closed forms by this method. Clearly, if [\nabla^E,A]=0 then [\nabla^E,(A)^k]=0, thus \rd(\tr[A^k])=0, and similarly, for any power series f(x), we have [\nabla,f(A)]=0, thus \rd(\tr[f(A)])=0.
The above analysis shows that [\tr[f(A)]] is an element of de Rham cohomology H_{dR}^\cdot(M;E), it seems depend on M, E and \nabla^E, while our invariant quantity of E should be independent on the connection \nabla^E.
The Chern-Weil theory claims that \tr\left[[f(R^E)]\right] is independent on \nabla^E.
Before we turn to the proof, let us set some definition
Now, we will prove that the definition is independent on \nabla^E.
\tr[f(R_0^E)]-\tr[f(R^E_1)]=\rd\omega.
this post is updated, added this proof, since yesterday is too late for me to write it out from my notes.
\tr[f(R_1^E)]-\tr[f(R_0^E)]=\int_0^1\left\{\frac{\rd}{\rd t}\tr[f(R_t^E)]\right\}\rd t,
and
\begin{align*} \int_0^1\left\{\frac{\rd}{\rd t}\tr[f(R_t^E)]\right\}\rd t &=\int_0^1\tr\left[\frac{\rd}{\rd t}\left(f(R_t^E)\right)\right]\rd t\\ &=\int_0^1\tr\left[f'(R^E_t)\cdot\frac{\rd R_t^E}{\rd t}\right]\rd t\\ &=\int_0^1\tr\left[\frac{\rd R_t^E}{\rd t}\cdot f'(R_t^E)\right]\rd t\quad\text{they are just matrix}\\ &=\int_0^1\tr\left[\left(\frac{\rd \nabla_t^E}{\rd t}\nabla_t^E +\nabla_t^E\frac{\rd\nabla_t^E}{\rd t}\right)f'(R_t^E)\right]\rd t\\ &=\int_0^1\tr\left[[\nabla_t^E,\frac{\rd\nabla_t^E}{\rd t}]f'(R_t^E)\right]\rd t\quad\text{$R_t^E$ is a matrix of 2-forms}\\ &\overset{\ast}{=}\int_0^1\tr\left[[\nabla_t^E,\frac{\rd\nabla_t^E}{\rd t}f'(R_t^E)]\right]\rd t\\ &=\int_0^1\rd\left(\tr\left[\frac{\rd\nabla_t^E}{\rd t}f'(R_t^E)\right]\right)\rd t\quad\text{by Lemma 2}\\ &=\rd\left\{\int_0^1\tr\left[\frac{\rd\nabla_t^E}{\rd t}f'(R_t^E)\right]\rd t\right\}, \end{align*}
The stared equality holds, since
\frac{\rd\nabla_t^E}{\rd t}=\nabla_1^E-\nabla^E_0\in\Omega^\cdot(M;\End(E),
and
[a,bc]=[a,b]c+(-1)^{|a||b|}b[a,c],
then apply Bianchi identity.
\int_0^1\tr\left[\frac{\rd\nabla_t^E}{\rd t}f'(R_t^E)\right]\rd t
as transgressed form.
发表回复